EP52 Waterbased Epoxy Part A

Chemwatch Hazard Alert Code: 2

Issue Date: **04/11/2016**Print Date: **07/11/2016**L.GHS.AUS.EN

Version No: 2.1.1.1 Safety Data Sheet according to WHS and ADG requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Chemwatch: 70-1714

Product name	EP52 Waterbased Epoxy Part A
Synonyms	Not Available
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant	identified
	uses

Requires that the two parts be mixed by hand or mixer before use, in accordance with manufacturers directions. Mix only as much as is required. **Do not** return the mixed material to the original containers

Details of the supplier of the safety data sheet

Registered company name	Oncrete Australia Pty Ltd
Address	Unit 4, 489 Scotsdale Drive, Varsity Lakes, QLD
Telephone	0406 948465
Fax	
Website	Not Available
Email	Not Available

Emergency telephone number

Association / Organisation	Not Available
Emergency telephone numbers	Not Available
Other emergency telephone numbers	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

Poisons Schedule	Not Applicable
Classification ^[1]	Skin Sensitizer Category 1
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI

Label elements

GHS label elements

SIGNAL WORD

WARNING

Version No: **2.1.1.1**

Issue Date: **04/11/2016**Print Date: **07/11/2016**

Hazard statement(s)

H317	May cause an allergic skin reaction.
------	--------------------------------------

Precautionary statement(s) Prevention

P280	Wear protective gloves/protective clothing/eye protection/face protection.	
P261	Avoid breathing mist/vapours/spray.	
P272	Contaminated work clothing should not be allowed out of the workplace.	

Precautionary statement(s) Response

P363	Wash contaminated clothing before reuse.	
P302+P352	IF ON SKIN: Wash with plenty of soap and water.	
P333+P313 If skin irritation or rash occurs: Get medical advice/attention.		

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
Not Available	<12	aliphatic polyamine
90530-15-7	<3	acrylonitrile amine adduct
1477-55-0	<1	benzene-1,3-dimethanamine
2855-13-2	<1	isophorone diamine
	balance	Ingredients determined not to be hazardous

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	If this product comes in contact with eyes: • Wash out immediately with water. • If irritation continues, seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- ullet There is no restriction on the type of extinguisher which may be used.
- ► Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Issue Date: 04/11/2016 Version No: 2.1.1.1 Print Date: 07/11/2016

Fire	Incom	patibility
		patibility

▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may

Advice for firefighters	s
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	other pyrolysis products typical of burning organic material. May emit poisonous fumes. May emit corrosive fumes, carbon dioxide (CO2) • The material is not readily combustible under normal conditions. • However, it will break down under fire conditions and the organic component may burn. • Not considered to be a significant fire risk. • Heat may cause expansion or decomposition with violent rupture of containers. • Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). • May emit acrid smoke. Combustion products include: carbon dioxide (CO2)

SECTION 6 ACCIDENTAL RELEASE MEASURES

HAZCHEM

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Not Applicable

methods and material	for containment and cleaning up
Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- ▶ DO NOT allow clothing wet with material to stay in contact with skin
- ▶ Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.

Safe handling

- ► Avoid contact with moisture.
- ▶ Avoid contact with incompatible materials.
- ▶ When handling, **DO NOT** eat, drink or smoke.
- ▶ Keep containers securely sealed when not in use.
- ▶ Avoid physical damage to containers.

Issue Date: **04/11/2016**Print Date: **07/11/2016**

Always wash hands with soap and water after handling.
 Work clothes should be laundered separately. Launder contaminated clothing before re-use.
 Use good occupational work practice.
 Observe manufacturer's storage and handling recommendations contained within this SDS.
 Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Store in original containers.
 Keep containers securely sealed.
 No smoking, naked lights or ignition sources.
 Store in a cool, dry, well-ventilated area.
 Store away from incompatible materials and foodstuff containers.
 Protect containers against physical damage and check regularly for leaks.
 Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	 Polyethylene or polypropylene container. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks. 		
Storage incompatibility	► Avoid reaction with oxidising agents		

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	benzene-1,3-dimethanamine	m-Xylene-a,a'-diamine	Not Available	Not Available	0.1 mg/m3	Sk

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
Tollchem WB EP Primer/Sealer Part A	Not Available	Not Available	Not Available	Not Available
Ingredient	Original IDLH		Revised IDLH	
aliphatic polyamine	Not Available		Not Available	
acrylonitrile amine adduct	Not Available		Not Available	
benzene- 1,3-dimethanamine	Not Available		Not Available	
isophorone diamine	Not Available		Not Available	

MATERIAL DATA

For benzene-1,3-dimethanamine (m-xylene-alpha,alpha'-diamine)

Saturates in air at 219.5 mg/m3 (39.5 ppm) at 25 deg C.

The substance is a gastrointestinal irritant and skin sensitiser in humans. Its actions are similar to p-phenylenediamine and the recommendation for a TLV-C is derived by analogy. Exposure at or below this value is thought to protect workers against the risk of skin irritation, percutaneous absorption and systemic injury. It should be noted however that individuals might be hypersusceptible or otherwise unusually responsive to the certain chemicals and this value may not be adequate to provide effective protection against adverse health effects.

The skin notation is currently undergoing review.

The TLV value is listed only in mg/m3 although it is anticipated that at this concentration the compound should exist largely as vapour.

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

Appropriate engineering controls

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or

Issue Date: **04/11/2016**Print Date: **07/11/2016**

contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances. If risk of overexposure exists, wear approved respirator. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. Provide adequate ventilation in warehouses and enclosed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

Eve and face

protection

See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

frequency and duration of contact,

chemical resistance of glove material,

glove thickness and

Hands/feet protection

Issue Date: **04/11/2016**Print Date: **07/11/2016**

dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.

Contaminated gloves should be replaced.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.

Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

See Other protection below

Other protection

- Overalls.
- ▶ P.V.C. apron.
- Barrier cream.
- ▶ Skin cleansing cream.
- ► Eye wash unit.

Thermal hazards

Not Available

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AK-AUS P2	-	AK-PAPR-AUS / Class 1 P2
up to 50 x ES	-	AK-AUS / Class 1 P2	-
up to 100 x ES	-	AK-2 P2	AK-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Slight yellow liquid with an amine odour; miscible with water.				
Physical state	Physical state Liquid Relative density (Water = 1)				
Odour	Not Available	Partition coefficient n-octanol / water	Not Available		
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available		

Issue Date: 04/11/2016 Print Date: 07/11/2016

pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	>100	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	2.3 (as water)	Gas group	Not Available
Solubility in water (g/L)	Miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	>1	VOC g/L	<10

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of epoxy resin amine hardener vapours (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting days after cessation of the exposure. Even faint traces of these vapours may trigger an intense Inhaled reaction in individuals showing "amine asthma". The literature records several instances of systemic intoxications following the use of amines in epoxy resin systems. Excessive exposure to the vapours of epoxy amine curing agents may cause both respiratory irritation and central nervous system depression. Signs and symptoms of central nervous system depression, in order of increasing exposure, are headache, dizziness, drowsiness, and incoordination. In short, a single prolonged (measured in hours) or excessive inhalation exposure may cause serious adverse effects, including death. The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of Ingestion harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the **Skin Contact** healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end

of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of

Issue Date: **04/11/2016**Print Date: **07/11/2016**

contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Open cuts, abraded or irritated skin should not be exposed to this material

Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Blistering, with weeping of serious fluid, and crusting and scaling may also occur.

Virtually all of the liquid amine curing agents can cause sensitisation or allergic skin reactions.

Individuals exhibiting "amine dermatitis" may experience a dramatic reaction upon re-exposure to minute quantities. Highly sensitive persons may even react to cured resins containing trace amounts of unreacted amine hardener. Minute quantities of air-borne amine may precipitate intense dermatological symptoms in sensitive individuals. Prolonged or repeated exposure may produce tissue necrosis.

NOTE: Susceptibility to this sensitisation will vary from person to person. Also, allergic dermatitis may not appear until after several days or weeks of contact. However, once sensitisation has occurred, exposure of the skin to even very small amounts of the material may cause erythema (redness) and oedema (swelling) at the site. Thus, all skin contact with any epoxy curing agent should be avoided.

Eye

Although the liquid is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn).

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Inhalation of epoxy resin amine hardener vapours (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine asthma". The literature records several instances of systemic intoxications following the use of amines in epoxy resin systems.

Excessive exposure to the vapours of epoxy amine curing agents may cause both respiratory irritation and central nervous system depression. Signs and symptoms of central nervous system depression, in order of increasing exposure, are headache, dizziness, drowsiness, and incoordination. In short, a single prolonged (measured in hours) or excessive inhalation exposure may cause serious adverse effects, including death.

Chronic

Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Blistering, with weeping of serious fluid, and crusting and scaling may also occur.

Virtually all of the liquid amine curing agents can cause sensitisation or allergic skin reactions.

Individuals exhibiting "amine dermatitis" may experience a dramatic reaction upon re-exposure to minute quantities. Highly sensitive persons may even react to cured resins containing trace amounts of unreacted amine hardener. Minute quantities of air-borne amine may precipitate intense dermatological symptoms in sensitive individuals. Prolonged or repeated exposure may produce tissue necrosis.

NOTE: Susceptibility to this sensitisation will vary from person to person. Also, allergic dermatitis may not appear until after several days or weeks of contact. However, once sensitisation has occurred, exposure of the skin to even very small amounts of the material may cause erythema (redness) and oedema (swelling) at the site. Thus, all skin contact with any epoxy curing agent should be avoided.

Tollchem WB EP	TOXICITY	IRRITATION	
Primer/Sealer Part A	Not Available	Not Available	
acrylonitrile amine	TOXICITY	IRRITATION	
adduct	Not Available	Not Available	
	TOXICITY	IRRITATION	
benzene-	dermal (rat) LD50: >3100 mg/kg ^[1]	Eye (rabbit): 0.05 mg/24h SEVERE	
1,3-dimethanamine	Inhalation (rat) LC50: 700 ppm/1hr ^[2]	Skin (rabbit): 0.75 mg/24h SEVERE	
	Oral (rat) LD50: 987 mg/kg ^[1]		
	TOXICITY	IRRITATION	
isophorone diamine	Oral (rat) LD50: 1030 mg/kg ^[2] [Manufacturer HUE]		
Legend:	1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

BENZENE-

Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated

Issue Date: **04/11/2016**Print Date: **07/11/2016**

reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure.

For benzene-1,3-dimethanamine (m-xylene-alpha,alpha'- diamine)

The toxicity via oral administration and inhalation was tissue damage in the digestive and respiratory organs, respectively, which are the first contact sites. The chemical is corrosive to rat and mouse skin and a sensitiser in the guinea pig maximisation test

In the 28-day repeated dose toxicity study [OECD TG 407], the chemical was given to rats by gavage at doses of 0, 10, 40, 150 and 600 mg/kg b.w/day. One male and four females died, and salivation, low locomotor activity and piloerection were noted in the 600 mg/kg group. Furthermore, ulceration, acanthosis with hyperkeratosis and submucosal inflammation were observed in the forestomach. No adverse effects were observed in the 150 mg/kg and the lower dose groups.

A reproductive /developmental toxicity screening test [OECD TG 421] of rats by gavage at 50, 150 and 450 mg/kg b.w/day for at least 41 days resulted in death in one male in the 150 mg/kg group, and three males and one female in the 450 mg/kg group. In almost all 450 mg/kg animals, the same histopathological changes as the above 28-day study were observed in the forestomach. No adverse effects were found at 50 mg/kg b.w/day. Based on this information, the NOAEL for repeated dose toxicity is considered to be 50 mg/kg b.w/day.

1,3-DIMETHANAMINE

In the above reproductive/developmental toxicity screening test [OECD TG 421] the substance was administered from 14 days before mating to 20 days after mating in males and to day 3 of lactation in females. No adverse effects were observed in terms of copulation, fertility, delivery and nursing of parents, and the viability, body weight and morphology of offspring. The NOAEL for reproductive/developmental toxicity (F1 offspring) was 450 mg/kg b.w/day.

The chemical was not mutagenic in bacteria [OECD TG 471 & 472]. It induced neither chromosomal aberrations in mammalian cells *in vitro* [OECD TG 473] nor micronuclei in mouse bone marrow *in vivo* [OECD TG 474].

In clinical observation of workers during the manufacturing process, the chemical appears to act as a gastrointestinal irritant. It has also been shown to cause contact sensitisation reactions in workers at concentrations equal to and below 0.1 mg/m3

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration.

For isophorone diamine

Based on a limited skin irritation study with rabbits and rats, isophorone diamine is deemed to be a strong irritant (duration of the exposure not reported) and corrosive after repeated application. Isophorone diamine is corrosive to the eyes of rabbits when tested according to OECD TG 405. Isophorone diamine was found to induce dermal sensitisation when tested according to OECD TG 406 in guinea pigs. From a number of publications there is evidence that frequent occupational exposure to isophorone diamine may lead to the development of allergic contact dermatitis in humans. No definite conclusion can be currently drawn on respiratory sensitisation.

From two 14-day inhalative exposure studies with rats no NOAEL could be determined. At the first study's LOAEL of 18 mg/m3, degeneration/necrosis in the olfactory epithelium of the nose were observed. Trachea, larynx and lungs were affected at 200 mg/m3 and above (degeneration/necrosis, hyperplasia, squamous metaplasia). At the LOAEL of the follow-up study, i.e. at 2.2 mg/m3, reversible minimal to mild degeneration of respiratory nasal mucosa in the anterior dorsal nose was observed. In a subchronic drinking water study according to OECD TG 408, the administration of 150 mg/kg bw/day led to reduced absolute and relative kidney weights in male and female rats (histopathology being indicative for tubular nephrosis), while 59 mg/kg bw/day (males) and 62 mg/kg bw/day (females) were determined as a NOAEL.

Isophorone diamine was not mutagenic in bacteria and mammalian cell systems *in vitro* (Ames test according to Directive 84/449/EEC B.14 (1984) and HPRT test according to OECD TG 476 (1984)). It did not induce chromosomal aberrations in CHO cells *in vitro* in a test performed in accordance with OECD TG 473. *In vivo* mouse micronucleus tests (one performed according to OECD TG 474 (1983) for the induction of micronucleated polychromatic erythrocytes were clearly negative. From all *in vitro* and *in vivo* tests performed there is no evidence that isophorone diamine has a mutagenic or clastogenic potential.

ISOPHORONE DIAMINE

No studies have been performed on the toxicity of isophorone diamine to reproduction.

Data from an oral 90-day study in rats according to OECD TG 408 did not reveal any adverse effects on the male and female reproductive organs.

Isophorone diamine did not show any teratogenic or embryofoetotoxic effects in a gavage study with rats performed in accordance with OECD TG 414 (2001) up to and including the highest tested dose level of 250 mg/kg bw/day. The NOAEL for maternal toxicity was 50 mg/kg bw/day, effects at 250 mg/kg bw/day were reduced food consumption and reduced body weight gain. The NOAEL for developmental toxicity is 250 mg/kg bw/day.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce respiratory tract irritation. Symptoms of pulmonary irritation may include coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and a burning sensation.

Unlike most organs, the lung can respond to a chemical insult or a chemical agent, by first removing or neutralising the irritant and then repairing the damage (inflammation of the lungs may be a consequence).

The repair process (which initially developed to protect mammalian lungs from foreign matter and antigens) may, however, cause further damage to the lungs (fibrosis for example) when activated by hazardous chemicals. Often, this results in an impairment of gas exchange, the primary function of the lungs. Therefore prolonged exposure to respiratory irritants may cause sustained breathing difficulties.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically

there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Chemwatch: **70-1714**Version No: **2.1.1.1**

Issue Date: **04/11/2016**Print Date: **07/11/2016**

Tollchem WB EP
Primer/Sealer Part A &
ACRYLONITRILE
AMINE ADDUCT &
BENZENE1,3-DIMETHANAMINE &
ISOPHORONE
DIAMINE

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view,

Tollchem WB EP
Primer/Sealer Part A &
ACRYLONITRILE
AMINE ADDUCT

No significant acute toxicological data identified in literature search.

Tollchem WB EP Primer/Sealer Part A & BENZENE-1,3-DIMETHANAMINE Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IgE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens).

Tollchem WB EP
Primer/Sealer Part A &
BENZENE1,3-DIMETHANAMINE

Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis.

ACRYLONITRILE
AMINE ADDUCT &
BENZENE1,3-DIMETHANAMINE &
ISOPHORONE
DIAMINE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Acute Toxicity	0	Carcinogenicity	0
Skin Irritation/Corrosion	0	Reproductivity	0
Serious Eye Damage/Irritation	0	STOT - Single Exposure	0
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	0
Mutagenicity	0	Aspiration Hazard	0

Legend:

- 🗶 Data available but does not fill the criteria for classification
- Data required to make classification available
- Data Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Ingredient	Endpoint	Test Duration (hr)	Species	Value	Source
benzene- 1,3-dimethanamine	LC50	96	Fish	191.854mg/L	3
benzene- 1,3-dimethanamine	EC50	96	Algae or other aquatic plants	33.195mg/L	3
isophorone diamine	LC50	96	Fish	54.352mg/L	3
isophorone diamine	EC50	48	Crustacea	17.4mg/L	4
isophorone diamine	EC50	96	Algae or other aquatic plants	7.221mg/L	3
isophorone diamine	EC10	72	Algae or other aquatic plants	=3.1mg/L	1

Chemwatch: 70-1714 Page 11 of 13 Issue Date: 04/11/2016 Print Date: 07/11/2016

Version No: 2.1.1.1

isophorone diamine	NOEC	72	Algae or other aquatic plants	=1.5mg/L	1
Legend:	3. EPIWIN Suite V3	.12 - Aquatic Toxicity Data (E	e ECHA Registered Substances - Ecc Estimated) 4. US EPA, Ecotox databa n) - Bioconcentration Data 7. METI (J	ase - Aquatic Toxicity Data	5. ECETOC

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
benzene- 1,3-dimethanamine	HIGH	HIGH
isophorone diamine	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
benzene- 1,3-dimethanamine	LOW (BCF = 2.7)
isophorone diamine	LOW (BCF = 3.4)

Mobility in soil

Ingredient	Mobility
benzene- 1,3-dimethanamine	LOW (KOC = 914.6)
isophorone diamine	LOW (KOC = 340.4)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:

- ▶ If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ▶ Reuse
- ▶ Recycling
- ► Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- ▶ It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible.
- ▶ Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- ▶ Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or incineration in a licenced apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant

Issue Date: **04/11/2016**Print Date: **07/11/2016**

HAZCHEM

Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

ACRYLONITRILE AMINE ADDUCT(90530-15-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Not Applicable

BENZENE-1,3-DIMETHANAMINE(1477-55-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards

Australia Inventory of Chemical Substances (AICS)

Australia Inventory of Chemical Substances (AICS)

Australia Hazardous Substances Information System - Consolidated Lists

Australia Hazardous Substances Information System - Consolidated Lists

ISOPHORONE DIAMINE(2855-13-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Y = All ingredients are on the inventory

National Inventory	Status	
Australia - AICS	N (acrylonitrile amine adduct)	
Canada - DSL	N (acrylonitrile amine adduct)	
Canada - NDSL	N (acrylonitrile amine adduct; isophorone diamine; benzene-1,3-dimethanamine)	
China - IECSC	Υ	
Europe - EINEC / ELINCS / NLP	Y	
Japan - ENCS	N (acrylonitrile amine adduct)	
Korea - KECI	N (acrylonitrile amine adduct)	
New Zealand - NZIoC	N (acrylonitrile amine adduct)	
Philippines - PICCS	N (acrylonitrile amine adduct)	
USA - TSCA	N (acrylonitrile amine adduct)	

Legend: N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

 Chemwatch: 70-1714
 Page 13 of 13
 Issue Date: 04/11/2016

 Version No: 2.1.1.1
 Print Date: 07/11/2016

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.