

RP300 Stone Enhancer

On-Crete Australia Pty Ltd

Version No: 1.4

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 4

Issue Date: **12/09/2019**Print Date: **12/09/2019**L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	RP300 Stone Enhancer			
Synonyms	Not Available			
Proper shipping name	RESIN SOLUTION, flammable			
Other means of identification	Not Available			

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Stone Tile Colour Enhancer

Details of the supplier of the safety data sheet

Registered company name	On-Crete Australia Pty Ltd			
Address	89 Scottsdale Drive Varsity Lakes Queensland Australia			
Telephone	1 7 5593 6884			
Fax	+61 7 5593 6885			
Website	www.on-crete.com.au			
Email	info@on-crete.com.au			

Emergency telephone number

Association / Organisation	On-Crete Australia Pty Ltd	
Emergency telephone numbers	+61 406 948 465	
Other emergency telephone numbers	+61 406 102 829	

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS

	Min	Max	
Flammability	3		
Toxicity	1		0 = Minimum
Body Contact	2		1 = Low
Reactivity	0		2 = Moderate 3 = High
Chronic	4		4 = Extreme

Poisons Schedule

Not Applicable

Version No: **1.4** Page **2** of **18** Issue Date: **12/09/2019**

RP300 Stone Enhancer

Eye Irritation Category 2A, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Flammable Liquid Category 2

Legend:

1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

SIGNAL WORD

DANGER

Hazard statement(s)

H319	Causes serious eye irritation.	
H336	May cause drowsiness or dizziness.	
H225	Highly flammable liquid and vapour.	

Precautionary statement(s) Prevention

P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.			
P271	Use only outdoors or in a well-ventilated area.			
P240	Ground/bond container and receiving equipment.			
P241	Jse explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.			
P242	Use only non-sparking tools.			
P243	Take precautionary measures against static discharge.			
P261	Avoid breathing mist/vapours/spray.			
P280	Wear protective gloves/protective clothing/eye protection/face protection.			

Precautionary statement(s) Response

P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam for extinction.				
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.				
P312	all a POISON CENTER or doctor/physician if you feel unwell.				
P337+P313	If eye irritation persists: Get medical advice/attention.				
P303+P361+P353	IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.				
P304+P340	P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.				

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.		
P405	Store locked up.		

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
67-63-0	>60	isopropanol
67923-07-3	<10	dimethylsiloxane, aminoethylsilylidyne, methoxy terminated

SECTION 4 FIRST AID MEASURES

Version No: 1.4 Page 3 of 18 Issue Date: 12/09/2019 Print Date: 12/09/2019

RP300 Stone Enhancer

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

For acute or short term repeated exposures to isopropanol:

- Rapid onset respiratory depression and hypotension indicates serious ingestions that require careful cardiac and respiratory monitoring together with immediate intravenous access.
- Rapid absorption precludes the usefulness of emesis or lavage 2 hours post-ingestion. Activated charcoal and cathartics are not clinically useful. Ipecac is most useful when given 30 mins. post-ingestion.
- ▶ Management is supportive. Treat hypotension with fluids followed by vasopressors.
- ▶ Watch closely, within the first few hours for respiratory depression; follow arterial blood gases and tidal volumes.
- ▶ Ice water lavage and serial haemoglobin levels are indicated for those patients with evidence of gastrointestinal bleeding.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- ► Alcohol stable foam.
- Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.
- · Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard.
- ▶ May be violently or explosively reactive.
- lacktriangledown Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place). Fire Fighting
 - Fight fire from a safe distance, with adequate cover.
 - ▶ If safe, switch off electrical equipment until vapour fire hazard removed.
 - Use water delivered as a fine spray to control the fire and cool adjacent area.
 - Avoid spraying water onto liquid pools.
 - Do not approach containers suspected to be hot.

Version No: 1.4 Page 4 of 18 Issue Date: 12/09/2019 Print Date: 12/09/2019

RP300 Stone Enhancer

▶ Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. ▶ Liquid and vapour are highly flammable. ▶ Severe fire hazard when exposed to heat, flame and/or oxidisers. ▶ Vapour may travel a considerable distance to source of ignition. ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). Fire/Explosion Hazard Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. WARNING: Long standing in contact with air and light may result in the formation of potentially explosive peroxides. **HAZCHEM** •3YE

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

► Remove all ignition sources.
► Clean up all spills immediately.
Avoid breathing vapours and contact with skin and eyes.

Minor Spills

- ▶ Control personal contact with the substance, by using protective equipment.
- ▶ Contain and absorb small quantities with vermiculite or other absorbent material.
- ▶ Wipe up.
- ▶ Collect residues in a flammable waste container.

Chemical Class: alcohols and glycols

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
-----------------	------	-------------	------------	-------------

LAND SPILL - SMALL

cross-linked polymer - particulate	1	shovel	shovel	R, W, SS
cross-linked polymer - pillow	1	throw	pitchfork	R, DGC, RT
sorbent clay - particulate	2	shovel	shovel	R,I, P
wood fiber - pillow	3	throw	pitchfork	R, P, DGC, RT
treated wood fiber - pillow	3	throw	pitchfork	DGC, RT
foamed glass - pillow	4	throw	pichfork	R, P, DGC, RT

LAND SPILL - MEDIUM

Major Spills

cross-linked polymer - particulate	1	blower	skiploader	R,W, SS
polypropylene - particulate	2	blower	skiploader	W, SS, DGC
sorbent clay - particulate	2	blower	skiploader	R, I, W, P, DGC
polypropylene - mat	3	throw	skiploader	DGC, RT
expanded mineral - particulate	3	blower	skiploader	R, I, W, P, DGC
polyurethane - mat	4	throw	skiploader	DGC, RT

Legend

DGC: Not effective where ground cover is dense

R: Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

Version No: 1.4 Issue Date: 12/09/2019 Page 5 of 18 Print Date: 12/09/2019

RP300 Stone Enhancer

- · Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- ▶ May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- ► Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources.
- ▶ Increase ventilation.
- ▶ Stop leak if safe to do so.
- ▶ Water spray or fog may be used to disperse /absorb vapour.
- ► Contain spill with sand, earth or vermiculite.
- ▶ Use only spark-free shovels and explosion proof equipment.
- ▶ Collect recoverable product into labelled containers for recycling.
- ▶ Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- ▶ Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Safe handling

Precautions for safe handling

- ► Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- Avoid all personal contact, including inhalation.
- ▶ Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- ▶ Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights, heat or ignition sources.
- ▶ When handling, **DO NOT** eat, drink or smoke.
- Vapour may ignite on pumping or pouring due to static electricity.
- DO NOT use plastic buckets.
 - ▶ Earth and secure metal containers when dispensing or pouring product.
 - Use spark-free tools when handling.
 - Avoid contact with incompatible materials.
 - Keep containers securely sealed.
 - Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - Work clothes should be laundered separately.
 - Use good occupational work practice.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin

Other information

- Store in original containers in approved flame-proof area.
- ▶ No smoking, naked lights, heat or ignition sources.
- ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- ▶ Keep containers securely sealed.
- ▶ Store away from incompatible materials in a cool, dry well ventilated area.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

DO NOT use aluminium or galvanised containers

- Packing as supplied by manufacturer.
- ▶ Plastic containers may only be used if approved for flammable liquid.
- ▶ Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C)

- ► For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- ▶ Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert

Suitable container

Version No: 1.4 Issue Date: 12/09/2019 Page 6 of 18 Print Date: 12/09/2019

RP300 Stone Enhancer

▶ absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Traces of benzene, a carcinogen, may form when silicones are heated in air above 230 degrees C. Concentrated acids and bases cause degradation of polymer. Boiling water may soften and weaken material. Isopropanol (syn: isopropyl alcohol, IPA):

- Forms ketones and unstable peroxides on contact with air or oxygen; the presence of ketones especially methyl ethyl ketone (MEK, 2-butanone) will accelerate the rate of peroxidation
- reacts violently with strong oxidisers, powdered aluminium (exothermic), crotonaldehyde, diethyl aluminium bromide (ignition), dioxygenyl tetrafluoroborate (ignition/ ambient temperature), chromium trioxide (ignition), potassiumtert-butoxide (ignition), nitroform (possible explosion), oleum (pressure increased in closed container), cobalt chloride, aluminium triisopropoxide, hydrogen plus palladium dust (ignition), oxygen gas, phosgene, phosgene plus iron salts (possible explosion), sodium dichromate plus sulfuric acid (exothermic/incandescence), triisobutyl aluminium
- reacts with phosphorus trichloride forming hydrogen chloride gas
- reacts, possibly violently, with alkaline earth and alkali metals, strong acids, strong caustics, acid anhydrides, halogens, aliphatic amines, aluminium isopropoxide, isocyanates, acetaldehyde, barium perchlorate (forms highly explosive perchloric ester compound), benzoyl peroxide, chromic acid, dialkylzincs, dichlorine oxide, ethylene oxide (possible explosion), hexamethylene diisocyanate (possible explosion), hydrogen peroxide (forms explosive compound), hypochlorous acid, isopropyl chlorocarbonate, lithium aluminium hydride, lithium tetrahydroaluminate, nitric acid, nitrogen dioxide, nitrogen tetraoxide (possible explosion), pentafluoroguanidine, perchloric acid (especially hot), permonosulfuric acid, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium, trinitromethane
- attacks some plastics, rubber and coatings
- reacts with metallic aluminium at high temperature
- ▶ may generate electrostatic charges

Alcohols

- are incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents.
- reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen
- react with strong acids, strong caustics, aliphatic amines, isocyanates, acetaldehyde, benzoyl peroxide, chromic acid, chromium oxide, dialkylzincs, dichlorine oxide, ethylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, nitrogen dioxide, pentafluoroguanidine, phosphorus halides, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium
- should not be heated above 49 deg. C. when in contact with aluminium equipment

Secondary alcohols and some branched primary alcohols may produce potentially explosive peroxides after exposure to light and/ or heat.

Storage incompatibility

Must not be stored together

- May be stored together with specific preventions

- May be stored together

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	isopropanol	Isopropyl alcohol	400 ppm / 983 mg/m3	1230 mg/m3 / 500 ppm	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
isopropanol	Isopropyl alcohol	400 ppm	2000 ppm	12000 ppm

Ingredient	Original IDLH	Revised IDLH
isopropanol	2,000 ppm	Not Available
dimethylsiloxane, aminoethylsilylidyne, methoxy terminated	Not Available	Not Available

MATERIAL DATA

Odour Threshold Value: 3.3 ppm (detection), 7.6 ppm (recognition)

Exposure at or below the recommended isopropanol TLV-TWA and STEL is thought to minimise the potential for inducing narcotic effects or significant

Version No: **1.4** Page **7** of **18** Issue Date: **12/09/2019**

RP300 Stone Enhancer

irritation of the eyes or upper respiratory tract. It is believed, in the absence of hard evidence, that this limit also provides protection against the development of chronic health effects. The limit is intermediate to that set for ethanol, which is less toxic, and n-propyl alcohol, which is more toxic, than isopropanol

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

reisonal protection

- ▶ Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Eye and face protection

Skin protection See Hand protection below

Hands/feet protection

- ► Wear chemical protective gloves, e.g. PVC.
- ► Wear safety footwear or safety gumboots, e.g. Rubber

Version No: **1.4** Page **8** of **18** Issue Date: **12/09/2019**

RP300 Stone Enhancer

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

Other protection

See Other protection below

▶ Overalls.

- ▶ PVC Apron.
- ▶ PVC protective suit may be required if exposure severe.
- ► Eyewash unit.
- Ensure there is ready access to a safety shower.

Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.

- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- ▶ Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

RP300 Stone Enhancer

Material	СРІ
NEOPRENE	Α

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Half-Face
Protection Factor Respirato

Half-Face Full-Face Respirator Respirator Powered Air Respirator

Version No: **1.4** Page **9** of **18** Issue Date: **12/09/2019**

RP300 Stone Enhancer

NITRILE	Α
NITRILE+PVC	Α
PE/EVAL/PE	Α
PVC	В
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Print Date: 12/09/2019

- * Continuous-flow; ** Continuous-flow or positive pressure demand
- ^ Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Not Available		
Physical state	Liquid	Relative density (Water = 1)	0.81
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	>350
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	82.1	Molecular weight (g/mol)	Not Available
Flash point (°C)	12	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	12	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.8	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	4.4	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	2.1	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Silicone fluids are stable under normal storage conditions. Hazardous polymerisation will not occur. At temperatures > 150 C, silicones can slowly react with the oxygen in air.

Version No: **1.4** Page **10** of **18** Issue Date: **12/09/2019**Print Date: **12/09/2019**

RP300 Stone Enhancer

When heated > 300 C, silicones can slowly depolymerise to volatile siloxanes whether or not air is present.
 Unstable in the presence of incompatible materials.
 Product is considered stable.
 Hazardous polymerisation will not occur.

Possibility of hazardous reactions

Conditions to avoid

See section 7

Incompatible materials

See section 7

Hazardous decomposition products

See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Strong evidence exists that exposure to the material may produce very serious irreversible damage (other than carcinogenesis, mutagenesis and teratogenesis) following a single exposure by inhalation.

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Inhaled

Exposure to aliphatic alcohols with more than 3 carbons may produce central nervous system effects such as headache, dizziness, drowsiness, muscle weakness, delirium, CNS depression, coma, seizure, and neurobehavioural changes. Symptoms are more acute with higher alcohols. Respiratory tract involvement may produce irritation of the mucosa, respiratory insufficiency, respiratory depression secondary to CNS depression, pulmonary oedema, chemical pneumonitis and bronchitis. Cardiovascular involvement may result in arrhythmias and hypotension. Gastrointestinal effects may include nausea and vomiting. Kidney and liver damage may result following massive exposures. The alcohols are potential irritants being, generally, stronger irritants than similar organic structures that lack functional groups (e.g. alkanes) but are much less irritating than the corresponding amines, aldehydes or ketones. Alcohols and glycols (diols) rarely represent serious hazards in the workplace, because their vapour concentrations are usually less than the levels which produce significant irritation which, in turn, produce significant central nervous system effects as well.

The odour of isopropanol may give some warning of exposure, but odour fatigue may occur. Inhalation of isopropanol may produce irritation of the nose and throat with sneezing, sore throat and runny nose. The effects in animals subject to a single exposure, by inhalation, included inactivity or anaesthesia and histopathological changes in the nasal canal and auditory canal.

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Strong evidence exists that exposure to the material may produce very serious irreversible damage (other than carcinogenesis, mutagenesis and teratogenesis) following a single exposure by swallowing.

Effects on the nervous system characterise over-exposure to higher aliphatic alcohols. These include headache, muscle weakness, giddiness, ataxia, (loss of muscle coordination), confusion, delirium and coma. Gastrointestinal effects may include nausea, vomiting and diarrhoea. In the absence of effective treatment, respiratory arrest is the most common cause of death in animals acutely poisoned by the higher alcohols. Aspiration of liquid alcohols produces an especially toxic response as they are able to penetrate deeply in the lung where they are absorbed and may produce pulmonary injury. Those possessing lower viscosity elicit a greater response. The result is a high blood level and prompt death at doses otherwise tolerated by ingestion without aspiration. In general the secondary alcohols are less toxic than the corresponding primary isomers. As a general observation, alcohols are more powerful central nervous system depressants than their aliphatic analogues. In sequence of decreasing depressant potential, tertiary alcohols with multiple substituent OH groups are more potent than secondary alcohols, which, in turn, are more potent than primary alcohols. The potential for overall systemic toxicity increases with molecular weight (up to C7), principally because the water solubility is diminished and lipophilicity is increased.

Ingestion

Within the homologous series of aliphatic alcohols, narcotic potency may increase even faster than lethality Only scanty toxicity information is available about higher homologues of the aliphatic alcohol series (greater than C7) but animal data establish that lethality does not continue to increase with increasing chain length. Aliphatic alcohols with 8 carbons are less toxic than those immediately preceding them in the series. 10 -Carbon n-decyl alcohol has low toxicity as do the solid fatty alcohols (e.g. lauryl, myristyl, cetyl and stearyl). However the rat aspiration test suggests that decyl and melted dodecyl (lauryl) alcohols are dangerous if they enter the trachea. In the rat even a small quantity (0.2 ml) of these behaves like a hydrocarbon solvent in causing death from pulmonary oedema.

Primary alcohols are metabolised to corresponding aldehydes and acids; a significant metabolic acidosis may occur. Secondary alcohols are converted to ketones, which are also central nervous system depressants and which, in he case of the higher homologues persist in the blood for many hours. Tertiary alcohols are metabolised slowly and incompletely so their toxic effects are generally persistent.

Version No: **1.4** Page **11** of **18** Issue Date: **12/09/2019**Print Date: **12/09/2019**

setting however, ingestion of insignificant quantities is not thought to be cause for concern.

RP300 Stone Enhancer

The material has **NOT** been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational

Following ingestion, a single exposure to isopropyl alcohol produced lethargy and non-specific effects such as weight loss and irritation. Ingestion of near-lethal doses of isopropanol produces histopathological changes of the stomach, lungs and kidneys, incoordination, lethargy, gastrointestinal tract irritation, and inactivity or anaesthesia.

Swallowing 10 ml. of isopropanol may cause serious injury; 100 ml. may be fatal if not promptly treated. The adult single lethal doses is approximately 250 ml. The toxicity of isopropanol is twice that of ethanol and the symptoms of intoxication appear to be similar except for the absence of an initial euphoric effect; gastritis and vomiting are more prominent. Ingestion may cause nausea, vomiting, and diarrhoea.

There is evidence that a slight tolerance to isopropanol may be acquired.

Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result.

Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis).

Accidental ingestion of the material may be damaging to the health of the individual.

Strong evidence exists that exposure to the material may produce very serious irreversible damage (other than carcinogenesis, mutagenesis and teratogenesis) following a single exposure by skin contact.

Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Skin Contact

Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

511ipa

Eve

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals.

Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Isopropanol vapour may cause mild eye irritation at 400 ppm. Splashes may cause severe eye irritation, possible corneal burns and eye damage. Eye contact may cause tearing or blurring of vision.

Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems.

Exposure to the material may cause concerns for human fertility, generally on the basis that results in animal studies provide sufficient evidence to cause a strong suspicion of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

Long term or repeated ingestion exposure of isopropanol may produce incoordination, lethargy and reduced weight gain.

Chronic

Repeated inhalation exposure to isopropanol may produce narcosis, incoordination and liver degeneration. Animal data show developmental effects only at exposure levels that produce toxic effects in the adult animals. Isopropanol does not cause genetic damage in bacterial or mammalian cell cultures or in animals.

There are inconclusive reports of human sensitisation from skin contact with isopropanol. Chronic alcoholics are more tolerant of systemic isopropanol than are persons who do not consume alcohol; alcoholics have survived as much as 500 ml. of 70% isopropanol.

Continued voluntary drinking of a 2.5% aqueous solution through two successive generations of rats produced no reproductive effects.

NOTE: Commercial isopropanol does not contain "isopropyl oil". An excess incidence of sinus and laryngeal cancers in isopropanol production workers has been shown to be caused by the byproduct "isopropyl oil". Changes in the production processes now ensure that no byproduct is formed. Production changes include use of dilute sulfuric acid at higher temperatures.

Continued...

Version No: 1.4 Page 12 of 18 Issue Date: 12/09/2019 Print Date: 12/09/2019

RP300 Stone Enhancer

	TOXICITY	IRRITATION
RP300 Stone Enhancer	Not Available	Not Available
	TOXICITY	IRRITATION
	dermal (rat) LD50: =12800 mg/kg ^[2]	Eye (rabbit): 10 mg - moderate
isopropanol	Inhalation (rat) LC50: 72.6 mg/l/4h ^[2]	Eye (rabbit): 100 mg - SEVERE
	Oral (rat) LD50: =4396 mg/kg ^[2]	Eye (rabbit): 100mg/24hr-moderate
		Skin (rabbit): 500 mg - mild
dimethylsiloxane,	TOXICITY	IRRITATION
aminoethylsilylidyne, methoxy terminated	Not Available	Not Available
Legend:		ubstances - Acute toxicity 2.* Value obtained from manufacturer's SDS FECS - Register of Toxic Effect of chemical Substances

ISOPROPANOL

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

For siloxanes:

Effects which based on the reviewed literature do not seem to be problematic are acute toxicity, irritant effects, sensitization and genotoxicity.

Some studies indicate that some of the siloxanes may have endocrine disrupting properties, and reproductive effects have caused concern about the possible effects of the siloxanes on humans and the environment.

Only few siloxanes are described in the literature with regard to health effects, and it is therefore not possible to make broad conclusions and comparisons of the toxicity related to short-chained linear and cyclic siloxanes based on the present evaluation. Data are primarily found on the cyclic siloxanes D4 (octamethylcyclotetrasiloxane) and D5 (decamethylcyclopentasiloxane) and the short-linear HMDS (hexamethyldisiloxane).

These three siloxanes have a relatively low order of acute toxicity by oral, dermal and inhalatory routes and do not require classification for this effect.

They are not found to be irritating to skin or eyes and are also not found sensitizing by skin contact. Data on respiratory sensitization have not been identified.

Subacute and subchronic toxicity studies show that the liver is the main target organ for D4 which also induces liver cell enzymes. This enzyme induction contributes to the elimination of the substance from the tissues. Primary target organ for D5 exposure by inhalation is the lung. D5 has an enzyme induction profile similar to that of D4. Subacute and subchronic inhalation of HMDS affect in particular the lungs and kidneys in rats.

None of the investigated siloxanes show any signs of genotoxic effects in vitro or in vivo. Preliminary results indicate that D5 has a potential carcinogenic effect.

D4 is considered to impair fertility in rats by inhalation and is classified as a substance toxic to reproduction in category 3 with the risk phrase R62 ('Possible risk of impaired fertility').

The results of a study to screen for oestrogen activity indicate that D4 has very weak oestrogenic and antioestrogenic activity and is a partial agonist (enhances the effect of the estrogen). It is not uncommon for compounds that are weakly oestrogenic to also have antioestrogenic properties. Comparison of the oestrogenic potency of D4 relative to ethinyloestradiol (steroid hormone) indicates that D4 is 585,000 times less potent than ethinyloestradiol in the rat stain Sprague- Dawley and 3.7 million times less potent than ethinyloestradiol in the Fisher-344 rat strain. Because of the lack of effects on other endpoints designated to assess oestrogenicity, the oestrogenicity as mode of action for the D4 reproductive effects has been questioned. An indirect mode of action causing a delay of the LH (luteinising hormone) surge necessary for optimal timing of ovulation has been suggested as the mechanism.

Based on the reviewed information, the critical effects of the siloxanes are impaired fertility (D4) and potential carcinogenic effects (uterine tumours in females). Furthermore there seem to be some effects on various organs following

repeated exposures, the liver (D4), kidney (HMDS) and lung (D5 and HMDS) being the target organs.

DIMETHYLSILOXANE, AMINOETHYLSILYLIDYNE, **METHOXY TERMINATED**

Version No: **1.4** Page **13** of **18** Issue Date: **12/09/2019**Print Date: **12/09/2019**

RP300 Stone Enhancer

A possible oestrogenic effect contributing to the reproductive toxicity of D4 is debated. There seems however to be some indication that this toxicity may be caused by another mechanism than oestrogen activity.

Studies are available for linear siloxanes from an analogue group comprising di- to hexa- siloxanes, as well as key physicochemical properties. The results of the acute toxicity studies for this analogue group are in agreement: there is no evidence from any of the available studies that the substances in this group have any potential for acute toxicity (in terms of either lethality or adverse clinical effects) by any route up to and exceeding the maximum dose levels tested according to current OECD guidelines. It is therefore valid to read-across the lack of acute toxicity between the members of the group where there are data gaps

The metabolism of silanes and siloxanes is influenced by the chemistry of silicon, and it is fundamentally different from that of carbon compounds. These differences are due to the fact that silicon is more electropositive than carbon; Si-Si bonds are less stable than C-C bonds and Si-O bonds form very readily, the latter due to their high bond energy. Functional groups such as -OH, -CO2H, and -CH2OH are commonly seen in organic drug metabolites. If such functionalities are formed from siloxane metabolism, they will undergo rearrangement with migration of the Si atom from carbon to oxygen. Consequently, alpha hydroxysilanes may isomerise to silanols and this provides a mechanism by which very polar metabolites may be formed from highly hydrophobic alkylsiloxanes in relatively few metabolic steps No significant acute toxicological data identified in literature search.

For isopropanol (IPA)

Acute toxicity: Isopropanol has a low order of acute toxicity. It is irritating to the eyes, but not to the skin. Very high vapor concentrations are irritating to the eyes, nose, and throat, and prolonged exposure may produce central nervous system depression and narcosis. Human volunteers reported that exposure to 400 ppm isopropanol vapors for 3 to 5 min. caused mild irritation of the eyes, nose and throat.

Although isopropanol produced little irritation when tested on the skin of human volunteers, there have been reports of isolated cases of dermal irritation and/or sensitization. The use of isopropanol as a sponge treatment for the control of fever has resulted in cases of intoxication, probably the result of both dermal absorption and inhalation. There have been a number of cases of poisoning reported due to the intentional ingestion of isopropanol, particularly among alcoholics or suicide victims. These ingestions typically result in a comatose condition. Pulmonary difficulty, nausea, vomiting, and headache accompanied by various degrees of central nervous system depression are typical. In the absence of shock, recovery usually occurred.

Repeat dose studies: The systemic (non-cancer) toxicity of repeated exposure to isopropanol has been evaluated in rats and mice by the inhalation and oral routes. The only adverse effects-in addition to clinical signs identified from these studies were to the kidney.

RP300 Stone Enhancer & ISOPROPANOL

Reproductive toxicity: A recent two-generation reproductive study characterised the reproductive hazard for isopropanol associated with oral gavage exposure. This study found that the only reproductive parameter apparently affected by isopropanol exposure was a statistically significant decrease in male mating index of the F1 males. It is possible that the change in this reproductive parameter was treatment related and significant, although the mechanism of this effect could not be discerned from the results of the study. However, the lack of a significant effect of the female mating index in either generation, the absence of any adverse effect on litter size, and the lack of histopathological findings of the testes of the high-dose males suggest that the observed reduction in male mating index may not be biologically meaningful.

Developmental toxicity: The developmental toxicity of isopropanol has been characterized in rat and rabbit developmental toxicity studies. These studies indicate that isopropanol is not a selective developmental hazard. Isopropanol produced developmental toxicity in rats, but not in rabbits. In the rat, the developmental toxicity occurred only at maternally toxic doses and consisted of decreased foetal body weights, but no teratogenicity

Genotoxicity: All genotoxicity assays reported for isopropanol have been negative

Carcinogenicity: rodent inhalation studies were conduct to evaluate isopropanol for cancer potential. The only tumor rate increase seen was for interstitial (Leydig) cell tumors in the male rats. Interstitial cell tumors of the testis is typically the most frequently observed spontaneous tumor in aged male Fischer 344 rats. These studies demonstrate that isopropanol does not exhibit carcinogenic potential relevant to humans. Furthermore, there was no evidence from this study to indicate the development of carcinomas of the testes in the male rat, nor has isopropanol been found to be genotoxic. Thus, the testicular tumors seen in the isopropanol exposed male rats are considered of no significance in terms of human cancer risk assessment

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	~	STOT - Single Exposure	~
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend: X − Data either not available or does not fill the criteria for classification

✓ – Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
RP300 Stone Enhancer	Not Available	Not Available	Not Available	Not Available	Not Available

Version No: 1.4 Page 14 of 18 Issue Date: 12/09/2019 Print Date: 12/09/2019

RP300 Stone Enhancer

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) -Bioconcentration Data 8. Vendor Data

For siloxanes

Environmental fate:

It is well accepted that polydimethylsiloxane fluids become permanent residents of sediment but should not exert adverse environmental effects. Silicone fluids are very surface active because the flexible siloxane linkages permit alignment of the hydrophobic methyl substituents towards the non-polar phase, and of the polysiloxane backbone towards the polar phase. The polar medium is generally water, and a polar media to which polydimethylsiloxanes become attached may be textiles, sewage sludge, hair, algae, sediment etc. In aqueous environments, polydimethylsiloxanes are adsorbed onto sedimenting particles. Also, in the presence of nitrate ions, which exist at various concentrations in the environment, short chain siloxanes are photodegraded to the level of silicate within days

The stability of the siloxanes, desirable from a technical point of view, makes the siloxanes very persistent, and once released to the environment the siloxanes remain for many years.

The main source of releases of siloxanes to the air is volatile siloxanes used in cosmetics, wax, polishes, and to a minor extent in several other applications. the volatile siloxanes may account for a significant part of the siloxanes used for cosmetics.

Non-volatile silicone fluids used in cosmetics, wax, polishes, cleaning products and for textile applications (softeners) will to a large extent end up in wastewater and be directed to wastewater treatment plants.

The cyclic siloxanes and small-chain linear siloxanes are bioconcentrated (bioconcentration factors for long-chained siloxanes have not been assessed). The estimated bioconcentration factors (BCF) of the small siloxanes range from 340 for HMDS to 40,000 for a phenylated trisiloxane (phenyl trimethicone). The small phenylated siloxanes seem to have very high BCF, and model estimates indicate that these substances are the most toxic for aquatic organisms

PBT profiler screening

In order to make a first comparison between the substances as to persistence, bioaccumulation and toxicity, the substances were screened using the PBT profiler developed by U.S. EPA (U.S. EPA 2003). The profiler uses a procedure to predict persistence, bioaccumulation, and toxicity of organic chemicals on the basis of the chemical structure and physical

parameters of the substances combined with experimental parameters for substance with a similar structure, using a QSAR approach.

The results for six members of the siloxane family predict the highest bioconcentration factors for the two phenyl siloxanes, one order of magnitudes higher than the values for the cyclic siloxanes and two orders of magnitudes higher than the values for the small linear methyl siloxanes. The predicted toxicity is as well significantly higher (lowest ChV values) for the phenyl siloxanes. The predicted half-life is nearly the same for all substances. Using U.S. EPA's criteria, the screening indicates that all substances are of high concern as to environmental toxicity, and that the phenyl siloxanes are considered very bioaccumulative.

Ecotoxicity:

The environmental fate and effects of volatile methylsiloxanes (mainly cyclosiloxanes) and polydimethylsiloxane (PDMS) have been reported: For octamethylcyclosiloxane:

Fish acute LC50 (14 day):: rainbow trout 10 ug/l; sheepshead minnow >6.3 ug/l

Daphnia magna acute EC50 (48 h): >15 ug/l; NOEC 15 ug/l Mysid shrimp acute LC50 (96 h): >9.1 ug/l; NOEC 9.1 ug/l

For PDMS

Daphnia magna NOEC 572 mg/kg

Physical effects such as surface entrapment have been observed when testing aquatic invertebrates in clean laboratory water, but similar effects are not expected in natural environments where a large variety of other surfaces provide opportunities for deposition

For isopropanol (IPA): log Kow : -0.16- 0.28 Half-life (hr) air : 33-84

Half-life (hr) H2O surface water : 130 Henry's atm m3 /mol: 8.07E-06

BOD 5: 1.19.60% COD: 1.61-2.30,97%

ThOD : 24

BOD 20: >70% * [Akzo Nobel]

Environmental Fate

Based on calculated results from a lever 1 fugacity model, IPA is expected to partition primarily to the aquatic compartment (77.7%) with the remainder to the air (22.3%). IPA has been shown to biodegrade rapidly in aerobic, aqueous biodegradation tests and therefore, would not be expected to persist in aquatic habitats. IPA is also not expected to persist in surface soils due to rapid evaporation to the air. In the air, physical degradation will occur rapidly due to hydroxy

radical (OH) attack. Overall, IPA presents a low potential hazard to aquatic or terrestrial biota.

IPA is expected to volatilise slowly from water based on a calculated Henry's Law constant of 7.52 x 10 -6 atm.m 3 /mole. The calculated half-life for the volatilisation from surface water (1 meter depth) is predicted to range from 4 days (from a river) to 31 days (from a lake). Hydrolysis is not considered a significant degradation process for IPA. However, aerobic biodegradation of IPA has been shown to occur rapidly under non-acclimated conditions, based on a result of 49% biodegradation from a 5 day BOD test. Additional biodegradation data developed using standardized test methods show that IPA is readily biodegradable in both freshwater and saltwater media (72 to 78% biodegradation in 20 days).

IPA will evaporate quickly from soil due to its high vapor pressure (43 hPa at 20°C), and is not expected to partition to the soil based on a calculated soil adsorption coefficient (log Koc) of 0.03.

IPA has the potential to leach through the soil due to its low soil adsorption

In the air, isopropanol is subject to oxidation predominantly by hydroxy radical attack. The room temperature rate constants determined by several investigators are in good agreement for the reaction of IPA with hydroxy radicals. The atmospheric half-life is expected to be 10 to 25 hours, based on measured degradation rates ranging from 5.1 to 7.1 x 10 -12 cm3 /molecule-sec, and an OH concentration of 1.5 x 106 molecule/cm3, which is a commonly used default value for calculating atmospheric half-lives. Using OH concentrations representative of polluted (3 x 106) and pristine (3 x 105) air, the atmospheric half-life of IPA would range from 9 to 126 hours, respectively. Direct photolysis is not expected to be an important transformation process for the degradation of IPA.

Version No: **1.4** Page **15** of **18** Issue Date: **12/09/2019**

RP300 Stone Enhancer

Ecotoxicity:

IPA has been shown to have a low order of acute aquatic toxicity. Results from 24- to 96-hour LC50 studies range from 1,400 to more than 10,000 mg/L for freshwater and saltwater fish and invertebrates. In addition, 16-hour to 8-day toxicity threshold levels (equivalent to 3% inhibition in cell growth) ranging from 104 to 4,930 mg/L have been demonstrated for various microorganisms.

Chronic aquatic toxicity has also been shown to be of low concern, based on 16- to 21-day NOEC values of 141 to 30 mg/L, respectively, for a freshwater invertebrate. Bioconcentration of IPA in aquatic organisms is not expected to occur based on a measured log octanol/water partition coefficient (log Kow) of 0.05, a calculated bioconcentration factor of 1 for a freshwater fish, and the unlikelihood of constant, long-term exposures.

Toxicity to Plants

Toxicity of IPA to plants is expected to be low, based on a 7-day toxicity threshold value of 1,800 mg/L for a freshwater algae, and an EC50 value of 2,100 mg/L from a lettuce seed germination test.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air	
isopropanol	LOW (Half-life = 14 days)	LOW (Half-life = 3 days)	

Bioaccumulative potential

Ingredient	Bioaccumulation	
isopropanol	LOW (LogKOW = 0.05)	

Mobility in soil

Ingredient	Mobility	
isopropanol	HIGH (KOC = 1.06)	

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ► Reduction
- ▶ Reuse
- ▶ Recycling
- ► Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- ▶ It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Version No: 1.4 Page 16 of 18 Issue Date: 12/09/2019 Print Date: 12/09/2019

RP300 Stone Enhancer

UN number	1866
UN proper shipping name	RESIN SOLUTION, flammable
Transport hazard class(es)	Class 3 Subrisk Not Applicable
Packing group	II
Environmental hazard	Not Applicable
Special precautions for user	Special provisions Not Applicable Limited quantity 5 L

Air transport (ICAO-IATA / DGR)

UN number	1866		
UN proper shipping name	Resin solution flammable		
Transport hazard class(es)	ICAO/IATA Class 3 ICAO / IATA Subrisk Not Applicable ERG Code 3L		
Packing group	Ш		
Environmental hazard	Not Applicable		
	Special provisions	A3	
	Cargo Only Packing Instructions	364	
	Cargo Only Maximum Qty / Pack	60 L	
Special precautions for user	Passenger and Cargo Packing Instructions	353	
usei	Passenger and Cargo Maximum Qty / Pack	5 L	
	Passenger and Cargo Limited Quantity Packing Instructions	Y341	
	Passenger and Cargo Limited Maximum Qty / Pack	1 L	

Sea transport (IMDG-Code / GGVSee)

	,		
UN number	1866		
UN proper shipping name	RESIN SOLUTION flammable		
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable		
Packing group	II		
Environmental hazard	Not Applicable		
Special precautions for user	EMS Number F-E , S-E Special provisions Not Applicable Limited Quantities 5 L		

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

ISOPROPANOL IS FOUND ON THE FOLLOWING REGULATORY LISTS

Version No: **1.4** Page **17** of **18** Issue Date: **12/09/2019**

RP300 Stone Enhancer

Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List
Australia Dangerous Goods Code (ADG Code) - List of Emergency Action
Codes
Australia Exposure Standards
Australia Hazardous Chemical Information System (HCIS) - Hazardous
Chemicals
Australia Inventory of Chemical Substances (AICS)
GESAMP/EHS Composite List - GESAMP Hazard Profiles
IMO IBC Code Chapter 17: Summary of minimum requirements
IMO IBC Code Chapter 18: List of products to which the Code does not

IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances
IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only
mixtures containing at least 99% by weight of components already
assessed by IMO

Print Date: 12/09/2019

IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety hazards

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Air Transport Association (IATA) Dangerous Goods Regulations
International Maritime Dangerous Goods Requirements (IMDG Code)
United Nations Recommendations on the Transport of Dangerous Goods
Model Regulations

DIMETHYLSILOXANE, AMINOETHYLSILYLIDYNE, METHOXY TERMINATED IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 10 / Appendix C

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4

National Inventory Status

apply

National Inventory	Status	
Australia - AICS	Yes	
Canada - DSL	Yes	
Canada - NDSL	No (dimethylsiloxane, aminoethylsilylidyne, methoxy terminated; isopropanol)	
China - IECSC	Yes	
Europe - EINEC / ELINCS / NLP	No (dimethylsiloxane, aminoethylsilylidyne, methoxy terminated)	
Japan - ENCS	No (dimethylsiloxane, aminoethylsilylidyne, methoxy terminated)	
Korea - KECI	Yes	
New Zealand - NZIoC	Yes	
Philippines - PICCS	Yes	
USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	No (dimethylsiloxane, aminoethylsilylidyne, methoxy terminated)	
Vietnam - NCI	Yes	
Russia - ARIPS	No (dimethylsiloxane, aminoethylsilylidyne, methoxy terminated)	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)	

SECTION 16 OTHER INFORMATION

Revision Date	12/09/2019
Initial Date	16/09/2016

SDS Version Summary

Version	Issue Date	Sections Updated
0.4.1.1.1	12/09/2019	Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Advice to Doctor, Chronic Health, Classification, Environmental, Exposure Standard, Fire Fighter (extinguishing media), Fire Fighter (fire/explosion hazard), First Aid (inhaled), First Aid (skin), First Aid (swallowed), Handling Procedure, Ingredients, Personal Protection (Respirator), Physical Properties, Spills (major), Storage (storage incompatibility), Storage (suitable container), Use

Other information

Version No: 1.4 Page 18 of 18 Issue Date: 12/09/2019 Print Date: 12/09/2019

RP300 Stone Enhancer

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

Powered by AuthorITe, from Chemwatch.