

On-crete Australia Pty Ltd

Version No: **1.2** Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code:

Issue Date: **11/08/2015** Print Date: **11/08/2015** Initial Date: **20/05/2015** L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	SV100 Epoxy White Base Part B
Synonyms	Not Available
Proper shipping name	AMINES, LIQUID, CORROSIVE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S. (contains isophorone diamine)
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified	Part B of white pigmented high solids epoxy system for concrete floor coating
uses	Tar D of white pignetice high solids cpoxy system for concrete hoor coulding

Details of the manufacturer/importer

Registered company name	On-crete Australia Pty Ltd
Address	4/489 Scottsdale Drive Varsity Lakes Queensland Australia
Telephone	+61 7 5593 6884
Fax	+61 7 5593 6885
Website	www.on-crete.com.au
Email	info@on-crete.com.au

Emergency telephone number

Association / Organisation	Not Available
Emergency telephone numbers	+61 439 241 090
Other emergency telephone numbers	+61 406 948 465

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the Model WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS

		Min	Max	
Flammability	1		1	
Toxicity	2			0 = Minimum
Body Contact	3			1 = Low
Reactivity	1			2 = Moderate 3 = High
Chronic	3			4 = Extreme

Poisons Schedule Not A

GHS Classification ^[1]	Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 1B, Skin Sensitizer Category 1, Serious Eye Damage Category 1, Germ Cell Mutagen Category 1B, Carcinogen Category 1B, Chronic Aquatic Hazard Category 3, Metal Corrosion Category 1, STOT - SE (Resp. Irr.) Category 3
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI

Label elements

SIGNAL WORD DANGER

Hazard statement(s)

H302	Harmful if swallowed
H314	Causes severe skin burns and eye damage
H317	May cause an allergic skin reaction
H318	Causes serious eye damage
H340	May cause genetic defects
H350	May cause cancer
H412	Harmful to aquatic life with long lasting effects
H290	May be corrosive to metals
H335	May cause respiratory irritation

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P260	Do not breathe dust/fume/gas/mist/vapours/spray.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P281	Use personal protective equipment as required.
P234	Keep only in original container.
P270	Do not eat, drink or smoke when using this product.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P301+P330+P331	IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.		
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower.		
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.		
P308+P313	IF exposed or concerned: Get medical advice/attention.		
P310	Immediately call a POISON CENTER/doctor/physician/first aider		
P363	Wash contaminated clothing before reuse.		
P302+P352	IF ON SKIN: Wash with plenty of water and soap		
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.		
P390	Absorb spillage to prevent material damage.		
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.		
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.		

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Di

Dispose of contents/container to authorised chemical landfill or if organic to high temperature incineration

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
25620-58-0	<10	trimethylhexamethylene diamine
112-24-3	<1	triethylenetetramine
64742-95-6	<1	naphtha petroleum, light aromatic solvent
2855-13-2	30-60	isophorone diamine

The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret.

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	 If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. For amines: If liquid amines come in contact with the eyes, irrigate immediately and continuously with low pressure flowing water, preferably from an eye wash fountain, for 15 to 30 minutes. For more effective flushing of the eyes, use the fingers to spread apart and hold open the eyelids. The eyes should then be "rolled" or moved in all directions. Seek immediate medical attention, preferably from an ophthalmologist.
Skin Contact	 If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor. For amines: In case of major exposure to liquid amine, promptly remove any contaminated clothing, including rings, watches, and shoe, preferably under a safety shower. Wash skin for 15 to 30 minutes with plenty of water and soap. Call a physician immediately. Remove and dry-clean or launder clothing soaked or soiled with this material before reuse. Dry cleaning of contaminated clothing may be more effective than normal laundering. Inform individuals responsible for cleaning of potential hazards associated with handling contaminated clothing. Discard contaminated leather articles such as shoes, belts, and watchbands. Note to Physician: Treat any skin burns as thermal burns. After decontamination, consider the use of cold packs and topical antibiotics.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719)

	 For amines: All employees working in areas where contact with amine catalysts is possible should be thoroughly trained in the administration of appropriate first aid procedures. Experience has demonstrated that prompt administration of such aid can minimize the effects of accidental exposure. Promptly move the affected person away from the contaminated area to an area of fresh air. Keep the affected person calm and warm, but not hot. If breathing is difficult, oxygen may be administered by a qualified person. If breathing stops, give artificial respiration. Call a physician at once.
Ingestion	 For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay. For amines: If liquid amine are ingested, have the affected person drink several glasses of water or milk. Do not induce vomiting. Immediately transport to a medical facility and inform medical personnel about the nature of the exposure. The decision of whether to induce vomiting should be made by an attending physician.

Indication of any immediate medical attention and special treatment needed

- Clinical experience of benzyl alcohol poisoning is generally confined to premature neonates in receipt of preserved intravenous salines.
 - Metabolic acidosis, bradycardia, skin breakdown, hypotonia, hepatorenal failure, hypotension and cardiovascular collapse are characteristic.
- + High urine benzoate and hippuric acid as well as elevated serum benzoic acid levels are found.
- + The so-called "gasping syndrome describes the progressive neurological deterioration of poisoned neonates.
- Management is essentially supportive.

For acute or short-term repeated exposures to highly alkaline materials:

- Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary.
- Oxygen is given as indicated.
- + The presence of shock suggests perforation and mandates an intravenous line and fluid administration.
- Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep

penetration into the tissue. Alkalis continue to cause damage after exposure.

INGESTION:

Milk and water are the preferred diluents

- No more than 2 glasses of water should be given to an adult.
- Neutralising agents should never be given since exothermic heat reaction may compound injury.
- * Catharsis and emesis are absolutely contra-indicated.
- * Activated charcoal does not absorb alkali.
- * Gastric lavage should not be used.

Supportive care involves the following:

- Withhold oral feedings initially.
- + If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention.
- Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).

SKIN AND EYE:

Injury should be irrigated for 20-30 minutes.

Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology]

For amines:

- Certain amines may cause injury to the respiratory tract and lungs if aspirated. Also, such products may cause tissue destruction leading to stricture. If lavage is performed, endotracheal and/or esophagoscopic control is suggested.
- No specific antidote is known.
- + Care should be supportive and treatment based on the judgment of the physician in response to the reaction of the patient.

Laboratory animal studies have shown that a few amines are suspected of causing depletion of certain white blood cells and their precursors in lymphoid tissue. These effects may be due to an immunosuppressive mechanism.

Some persons with hyperreactive airways (e.g., asthmatic persons) may experience wheezing attacks (bronchospasm) when exposed to airway irritants. Lung injury may result following a single massive overexposure to high vapour concentrations or multiple exposures to lower concentrations of any pulmonary irritant material.

Health effects of amines, such as skin irritation and transient corneal edema ("blue haze," "halo effect," "glaucopsia"), are best prevented by means of formal worker education, industrial hygiene monitoring, and exposure control methods. Persons who are highly sensitive to the triggering effect of non-specific irritants should not be assigned to jobs in which such agents are used, handled, or manufactured.

Medical surveillance programs should consist of a pre-placement evaluation to determine if workers or applicants have any impairments (e.g., hyperreactive airways or bronchial asthma) that would limit their fitness for work in jobs with potential for exposure to amines. A clinical baseline can be established at the time of this evaluation.

Periodic medical evaluations can have significant value in the early detection of disease and in providing an opportunity for health counseling. Medical personnel conducting medical surveillance of individuals potentially exposed to polyurethane amine catalysts should consider the following:

- + Health history, with emphasis on the respiratory system and history of infections
- Physical examination, with emphasis on the respiratory system and the lymphoreticular organs (lymph nodes, spleen, etc.)
- + Lung function tests, pre- and post-bronchodilator if indicated
- Total and differential white blood cell count
- Serum protein electrophoresis

Persons who are concurrently exposed to isocyanates also should be kept under medical surveillance.

Pre-existing medical conditions generally aggravated by exposure include skin disorders and allergies, chronic respiratory disease (e.g. bronchitis, asthma, emphysema), liver disorders, kidney disease, and eye disease.

Broadly speaking, exposure to amines, as characterised by amine catalysts, may cause effects similar to those caused by exposure to ammonia. As such, amines should be considered potentially injurious to any tissue that is directly contacted.

Inhalation of aerosol mists or vapors, especially of heated product, can result in chemical pneumonitis, pulmonary edema, laryngeal edema, and delayed scarring of the airway or other affected organs. There is no specific treatment.

Clinical management is based upon supportive treatment, similar to that for thermal burns.

Persons with major skin contact should be maintained under medical observation for at least 24 hours due to the possibility of delayed reactions.

Polyurethene Amine Catalysts: Guidelines for Safe Handling and Disposal Technical Bulletin June 2000

Alliance for Polyurethanes Industry

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

	▶ Foam.
	 Dry chemical powder.
	 BCF (where regulations permit).
	► Carbon dioxide.
	 Water spray or fog - Large fires only.
	• Water spray of log - Large mes only.

Special hazards arising from the substrate or mixture

Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine et result

Advice for firefighters

Fire Fighting	 For amines: For firefighting, cleaning up large spills, and other emergency operations, workers must wear a self-contained breathing apparatus with full face-piece, operated in a pressure-demand mode. Airline and air purifying respirators should not be worn for firefighting or other emergency or upset conditions. Respirators should be used in conjunction with a respiratory protection program, which would include suitable fit testing and medical evaluation of the user.
Fire/Explosion Hazard	 Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Combustion products include; carbon dioxide (CO2) aldehydes nitrogen oxides (NOx) other pyrolysis products typical of burning organic material Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.May emit corrosive fumes. WARNING: Long standing in contact with air and light may result in the formation of potentially explosive peroxides.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

	• Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or
	disposal of material.
	► Check regularly for spills and leaks.
	Slippery when spilt.
	► Clean up all spills immediately.
	Avoid breathing vapours and contact with skin and eyes.
	Control personal contact with the substance, by using protective equipment.
Minor Spills	Contain and absorb spill with sand, earth, inert material or vermiculite.
	► Wipe up.
	Place in a suitable, labelled container for waste disposal.
	for amines:
	If possible (i.e., without risk of contact or exposure), stop the leak.
	 Contain the spilled material by diking, then neutralize.
	• Next, absorb the neutralized product with clay, sawdust, vermiculite, or other inert absorbent and shovel into containers.
	► Store the containers outdoors.

	 Brooms and mops should be disposed of, along with any remaining absorbent, in accordance with all applicable federa state, and local regulations and requirements. Decontamination of floors and other hard surfaces after the spilled material has been removed may be accomplished using a 5% solution of acetic acid, followed by very hot water Dispose of the material in full accordance with all federal, state, and local laws and regulations governing the disposa chemical wastes. Waste materials from an amine catalyst spill or leak may be "hazardous wastes" that are regulated under various laws 						
	 If contamination o 	and tell them lo tective clothing ans available, s on (or protect in d lights or igniti n. o do so. g may be used spill with sand, e product into l use and seal in event runoff int rations, decont f drains or wate	cation and nature o g with breathing app spillage from enterin n place). on sources. to disperse / absort earth or vermiculite abelled containers f labelled drums for o o drains. aminate and launde	aratus ng drai o vapo o or recy disposa r all pr	ns or water ur. vcling. al.	hing and equipme	nt before storing and re-using
	Chemical Class: amir For release onto land	-	d sorbents listed in a	order o	f priority.		
	SORBENT TYPE	RANK	APPLICATION		COLL	ECTION	LIMITATIONS
	LAND SPILL - SMALI	_					
	cross-linked polymer	- particulate		1	shovel	shovel	R, W, SS
	cross-linked polymer	- pillow		1	throw	pitchfork	R,DGC, RT
	sorbent clay - particu	ılate		2	shovel	shovel	R, I, P
	wood fiber - pillow				throw	pitchfork	R, P, DGC, RT,
	treated wood fibre - p	oillow		3	throw	pitchfork	DGC, RT
	foamed glass - pillow	1		4	throw	pitchfork	R, P, DGC, RT
laiar Chilla	LAND SPILL - MEDIU	M					
lajor Spills	cross-linked polymer	-particulate		1	blower	skiploader	R, W, SS
	cross-linked polymer	- pillow		2	throw	skiploader	R, DGC, RT
	sorbent clay - particu	ılate		3	blower	skiploader	R, I, P
	polypropylene - parti	culate		3	blower	skiploader	W, SS, DGC
	expanded mineral - p	articulate		4	blower	skiploader	R, I, W, P, DGC
	polypropylene - mat			4	throw	skiploader	DGC, RT
	polypropylene - mat Legend DGC: Not effective wi R; Not reusable I: Not incinerable P: Effectiveness redu RT:Not effective when SS: Not for use within W: Effectiveness redu Reference: Sorbents	ced when rainy e terrain is rug e environmenta uced when wind	, ged Ily sensitive sites ly	1			DGC, RT

NOTE:

 Organic absorbents have been known to ignite when contaminated with amines in closed containers. Certain cellulosic materials used for spill cleanup such as wood chips or sawdust have shown reactivity with ethyleneamines and should be avoided.

Slippery when spilt.

For amines:

- First remove all ignition sources from the spill area.
- Have firefighting equipment nearby, and have firefighting personnel fully trained in the proper use of the equipment and in the procedures used in fighting a chemical fire.
- Spills and leaks of polyurethane amine catalysts should be contained by diking, if necessary, and cleaned up only by properly trained and equipped personnel. All others should promptly leave the contaminated area and stay upwind.
- + Protective equipment for cleanup crews should include appropriate respiratory protective devices and impervious clothing,

SV100 Epoxy White Base Part B

 footwear, and gloves. All work areas should be equipped with safety showers and eyewash fountains in good working order. Any material spilled or splashed onto the skin should be quickly washed off. Spills or releases may need to be reported to federal, state, and local authorities. This reporting contingency should be a part of a site's emergency response plan. Protective equipment should be used during emergency situations whenever there is a likelihood of exposure to liquid amines or to excessive concentrations of amine vapor. "Emergency" may be defined as any occurrence, such as, but not limited to, equipment failure, rupture of containers, or failure of control equipment that results in an uncontrolled release of amine liquid or vapor. Emergency protective equipment should include: Self-contained breathing apparatus, with full face-piece, operated in positive pressure or pressure-demand mode. Rubber gloves Long-sleeve coveralls or impervious full body suit Head protection, such as a hood, made of material(s) providing protection against amine catalysts Firefighting personnel and other on-site Emergency Responders should be fully trained in Chemical Emergency Procedures. However back-up from local authorities should be sought
Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling	 Contains low boiling substance: Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately. Check for bulging containers. Vent periodically Always release caps or seals slowly to ensure slow dissipation of vapours DO NOT USE brass or copper containers / stirrers DO NOT allow clothing wet with material to stay in contact with skin The substance accumulates peroxides which may become hazardous only if it evaporates or is distilled or otherwise treated to concentrate the peroxides which may become hazardous only if it evaporates or is distilled or otherwise treated to concentrate the peroxides. The substance may concentrate around the container opening for example. Purchases of peroxidisable chemicals should be restricted to ensure that the chemical is used completely before it can become peroxidised. A responsible person should maintain an inventory of peroxidisable chemicals or annotate the general chemical inventory to indicate which chemicals are subject to peroxidation. An expiration date should be determined. The chemical should either be treated to remove peroxidised or disposed of before this date. The person or laboratory receiving the chemical should record a receipt date on the bottle. The individual opening the containers should and opening date. Unopened containers due to the supplier should be safe to store for 18 months. Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-wentilated area. Avoid contact with moisture. Avoid contact with moisture. Avoid contact with moisture. Avoid contact with most esparately. Launder contaminated clothing before re-use. Viber handling, DO NOT est, drink or smoke. Keep containers securely sealed when not in use. Always wash hands with soap and w
Other information	 Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this MSDS. DO NOT store near acids, or oxidising agents No smoking, naked lights, heat or ignition sources.

Conditions for safe storage, including any incompatibilities

enalitere fer eare eterage, meraling any meenipalismee				
Suitable container	 DO NOT use aluminium or galvanised containers Lined metal can, lined metal pail/ can. Plastic pail. Polyliner drum. 			

	 Packing as recommended by manufacturer.
	Check all containers are clearly labelled and free from leaks.
	For low viscosity materials
	 Drums and jerricans must be of the non-removable head type. Where a can is to be used as an inner package, the can must have a correlation of an elegand.
	Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 26% aSt (22 dag. C) and calida (between 15 C dag. and 40 dag. C):
	For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):
	 ▶ Removable head packaging; ▶ Cans with friction closures and
	 Iow pressure tubes and cartridges
	may be used.
	-
	Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.
	Benzyl alcohol:
	► may froth in contact with water
	► slowly oxidises in air, oxygen forming benzaldehyde
	► is incompatible with mineral acids, caustics, aliphatic amines, isocyanates
	▶ reacts violently with strong oxidisers, and explosively with sulfuric acid at elevated temperatures
	 corrodes aluminium at high temperatures
	is incompatible with aluminum, iron, steel
	 attacks some nonfluorinated plastics; may attack, extract and dissolve polypropylene
	Benzyl alcohol contaminated with 1.4% hydrogen bromide and 1.2% of dissolved iron(II) polymerises exothermically above 100 deg. C.
Storage incompatibility	 Reacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air. For alkyl aromatics: The alkyl aromatics: The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring. Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids. Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides undergo Criegee rearrangement easily. Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity. Microwave conditions give improved yields of the oxidation products. Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx - these may be components of photochemical smogs. Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007 Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents. Aromatics can react exothermically with bases and with diazo compounds.
	 Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.
	Avoid contact with copper, aluminium and their alloys.

- X Must not be stored together
- 0 May be stored together with specific preventions
- + May be stored together

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Not Available

Ingredient	Material name			TEEL-2	TEEL-3
triethylenetetramine	Triethylenetetramine			5.7 ppm	83 ppm
naphtha petroleum, light aromatic solvent	Aromatic hydrocarbon solvents; (High flash naphtha distillates; Solvent naphtha (petroleum), light aromatic)			34 ppm	410 ppm
Ingredient	Original IDLH	Revised IDLH			
trimethylhexamethylene diamine	Not Available	Not Available			
triethylenetetramine	Not Available Not Available				
naphtha petroleum, light aromatic solvent	Not Available	Not Available			
isophorone diamine	ne diamine Not Available Not Available				

MATERIAL DATA

For trimethyl benzene as mixed isomers (of unstated proportions)

Odour Threshold Value: 2.4 ppm (detection)

Use care in interpreting effects as a single isomer or other isomer mix. Trimethylbenzene is an eye, nose and respiratory irritant. High concentrations cause central nervous system depression. Exposed workers show CNS changes, asthmatic bronchitis and blood dyscrasias at 60 ppm. The TLV-TWA is thought to be protective against the significant risk of CNS excitation, asthmatic bronchitis and blood dyscrasias associated with exposures above the limit.

Odour Safety Factor (OSF) OSF=10 (1,2,4-TRIMETHYLBENZENE)

Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded.

Odour Safety Factor (OSF) is determined to fall into either Class C, D or E.

The Odour Safety Factor (OSF) is defined as:

OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm

Classification into classes follows:

ClassOSF Description

- A 550 Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when
- distracted by working activities B 26-550As "A" for 50-90% of persons being distracted
- C 1-26 As "A" for less than 50% of persons being distracted
- D 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached
- E <0.18 As "D" for less than 10% of persons aware of being tested

NOTE M: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.005% w/w benzo[a]pyrene (EINECS No 200-028-5). This note applies only to certain complex oil-derived substances in Annex IV.

European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI.

European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

Appropriate engineering controls	 Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area. Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.
	• Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including

	 piping systems, with any sample ports or openings closed while the carcinogens are contained within. Open-vessel systems are prohibited. Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation. Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas). Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air. Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed. CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear
Personal protection	
Eye and face protection	 Chemical goggles. Full face shield may be required for supplementary but never for primary protection of eyes. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] For amines: SPECIAL PRECAUTION: Because amines are alkaline materials that can cause rapid and severe tissue damage, wearing of contact lenses while working with amines is strongly discouraged. Wearing such lenses can prolong contact of the eye tissue with the amine, thereby causing more severe damage. Appropriate eye protection should be worn whenever amines are handled or whenever there is any possibility of direct contact with liquid products, vapors, or aerosol mists. CAUTION: Ordinary safety glasses or face-shields will not prevent eye irritation from high concentrations of vapour. In operations where positive-pressure, air-supplied breathing apparatus is not required, all person shandling liquid amine catalysts or other polyurethane components in open containers should wear chemical workers safety goggles.
Skin protection	See Hand protection below
Hands/feet protection	 Wear chemical protective gloves, e.g. PVC. Wear safety footwear or safety gumboots, e.g. Rubber When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. NOTE: The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and.has to be observed when making a final choice. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: frequency and duration of contact, chemical resistance of glove material, glove thickness and dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

• Some glove polymer types are less affected by movement and this should be taken into account when considering gloves

	 for long-term use. Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Leather wear not recommended: Contaminated leather footwear, watch bands, should be destroyed, i.e. burnt, as they cannot be adequately decontaminated For amines: Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended Where there is a possibility of exposure to liquid amines skin protection should include: rubber gloves, (neoprene, nitrile, or butyl). DO NOT USE latex.
Body protection	See Other protection below
Other protection	 Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent] Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent] Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely. Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. Overalls. PVC protective suit may be required if exposure severe. Eyewash unit. Ensure there is ready access to a safety shower.
Thermal hazards	Not Available

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

SV100 Epoxy White Base Part B

Material	СРІ
BUTYL	A
VITON	A
NEOPRENE	С
NITRILE	С
PE/EVAL/PE	С

* CPI - Chemwatch Performance Index

B: Satisfactory; may degrade after 4 hours continuous immersion C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Straw coloured
------------	----------------

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AK-AUS P2	-	AK-PAPR-AUS / Class 1 P2
up to 50 x ES	-	AK-AUS / Class 1 P2	-
up to 100 x ES	-	AK-2 P2	AK-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

A: Best Selection

Physical state	Liquid	Relative density (Water = 1)	1.02
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	380
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	519.61
Initial boiling point and boiling range (°C)	>200	Molecular weight (g/mol)	Not Available
Flash point (°C)	>100	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	13	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.2	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	0.01	Gas group	Not Available
Solubility in water (g/L)	Immiscible	pH as a solution (50%)	11
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

	Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory
	response involving the recruitment and activation of many cell types, mainly derived from the vascular system. The acute toxicity of inhaled alkylbenzenes is best described by central nervous system depression. As a rule, these compounds may also act as general anaesthetics.
Inhaled	Systemic poisoning produced by general anaesthesia is characterised by lightheadedness, nervousness, apprehension, euphoria, confusion, dizziness, drowsiness, tinnitus, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness and respiratory depression and arrest. Cardiac arrest may result from cardiovascular collapse. Bradycardia, and hypotension may also be produced.
	Inhaled alkylbenzene vapours cause death in animals at air levels that are relatively similar (typically LC50s are in the range 5000 -8000 ppm for 4 to 8 hour exposures). It is likely that acute inhalation exposure to alkylbenzenes resembles that to general anaesthetics.
	Alkylbenzenes are not generally toxic other than at high levels of exposure. This may be because their metabolites have a low order of toxicity and are easily excreted. There is little or no evidence to suggest that metabolic pathways can become saturated leading to spillover to alternate pathways. Nor is there evidence that toxic reactive intermediates, which may produce subsequent toxic or mutagenic effects, are formed

Inhalation of epoxy resin amine hardener vapours (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine asthma". The literature records several instances of systemic intoxications following the use of amines in epoxy resin systems. Excessive exposure to the vapours of epoxy amine curing agents may cause both respiratory irritation and central nervous system depression. Signs and symptoms of central nervous system depression, in order of increasing exposure, are headache, dizziness, drowsiness, and incoordination. In short, a single prolonged (measured in hours) or excessive inhalation exposure may cause serious adverse effects, including death. Inhalation of amine vapours may cause irritation of the mucous membranes of the nose and throat and lung irritation with respiratory distress and cough. Single exposures to near lethal concentrations and repeated exposures to sublethal concentrations produces tracheitis, bronchitis, pneumonitis and pulmonary oedema. Aliphatic and alicyclic amines are generally well absorbed from the respiratory tract. Systemic effects include headache, nausea, faintness and anxiety. These effects are thought to be transient and are probably related to the pharmacodynamic action of the amines. Histamine release by aliphatic amines may produce bronchoconstriction and wheezing. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. A significant number of individuals exposed to mixed trimethylbenzenes complained of nervousness, tension, anxiety and asthmatic bronchitis. Peripheral blood showed a tendency to hypochromic anaemia and a deviation from normal in coagulability of the blood. Hydrocarbon concentrations ranged from 10 to 60 ppm. Contamination of the mixture with benzene may have been responsible for the blood dyscrasias. High concentrations of mesitylene vapour (5000 to 9000 ppm) caused central nervous system depression in mice. Similar exposures of pseudocumene also produced evidence of CNS involvement. Inhalation of benzyl alcohol may affect respiration (paralysis of the respiratory center, respiratory depression, gasping respirations), cardiovascular system (hypotension Acute effects from inhalation of high vapour concentrations may be chest and nasal irritation with coughing, sneezing, headache and even nausea. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. Ingestion of amine epoxy-curing agents (hardeners) may cause severe abdominal pain, nausea, vomiting or diarrhoea. The vomitus may contain blood and mucous. If death does not occur within 24 hours there may be an improvement in the patients condition for 2-4 days only to be followed by the sudden onset of abdominal pain, board-like abdominal rigidity or hypo-tension; this indicates that delayed gastric or oesophageal corrosive damage has occurred. Aliphatic and alicyclic amines are generally well absorbed from the gut. Corrosive action may cause tissue damage throughout the gastrointestinal tract. Detoxification is thought to occur in the liver, kidney and intestinal mucosa with the enzymes, monoamine oxidase and diamine oxidase (histaminase) having a significant role. Ingestion of large doses of benzyl alcohol may cause abdominal pain, nausea, vomiting, diarrhea. It may affect behavior/central nervous system and cause headache, somnolence, excitement, dizziness, ataxia, coma, convulsions, and Ingestion other symptoms of central nervous system depression. Exposure to excessive amounts of benzyl alcohol has been associated with toxicity (hypotension, metabolic acidosis), particularly in neonates, and an increased incidence of kernicterus (a neurological condition that occurs in severe jaundice), particularly in small preterm infants. There have been rare reports of deaths, primarily in preterm infants, associated with exposure to excessive amounts of benzyl alcohol. The amount of benzyl alcohol from medications is usually considered negligible compared to that received in flush solutions containing benzyl alcohol. Administration of high dosages of medications containing this preservative must take into account the total amount of benzyl alcohol administered. The amount of benzyl alcohol at which toxicity may occur is not known. If the patient requires more than the recommended dosages or other medications containing this preservative, the practitioner must consider the daily metabolic load of benzyl alcohol from these combined sources. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Skin contact with the material may be harmful; systemic effects may result following absorption. The material can produce chemical burns following direct contact with the skin. Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Blistering, with weeping of serious fluid, and crusting and scaling may also occur. Virtually all of the liquid amine curing agents can cause sensitisation or allergic skin reactions. Individuals exhibiting "amine dermatitis" may experience a dramatic reaction upon re-exposure to minute quantities. Highly sensitive persons may even react to cured resins containing trace amounts of unreacted amine hardener. Minute quantities of air-borne amine may precipitate intense dermatological symptoms in sensitive individuals. Prolonged or repeated exposure **Skin Contact** may produce tissue necrosis. NOTE: Susceptibility to this sensitisation will vary from person to person. Also, allergic dermatitis may not appear until after several days or weeks of contact. However, once sensitisation has occurred, exposure of the skin to even very small amounts of the material may cause erythema (redness) and oedema (swelling) at the site. Thus, all skin contact with any epoxy curing agent should be avoided. Volatile amine vapours produce primary skin irritation and dermatitis. Direct local contact, with the lower molecular weight liquids, may produce skin burns. Percutaneous absorption of simple aliphatic amines is known to produce lethal effects often

SV100 Epoxy White Base Part B

	 the same as that for oral administration. Cutaneous sensitisation has been recorded chiefly due to ethyleneamines. Histamine release following exposure to many aliphatic amines may result in "triple response" (white vasoconstriction, red flare and wheal) in human skin. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The material may produce moderate skin irritation; limited evidence or practical experience suggests, that the material either: produces moderate inflammation of the skin in a substantial number of individuals following direct contact and/or produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.
Eye	The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Vapours of volatile amines cause eye irritation with lachrymation, conjunctivitis and minor transient corneal oedema which results in "halos" around lights (glaucopsia, "blue haze", or "blue-grey haze"). Vision may become misty and halos may appear several hours after workers are exposed to the substance This effect generally disappears spontaneously within a few hours of the end of exposure, and does not produce physiological after-effects. However oedema of the corneal epithelium, which is primarily responsible for vision disturbances, may take more than one or more days to clear, depending on the severity of exposure. Photophobia and discomfort from the roughness of the corneal surface also may occur after greater exposures. Although no detriment to the eye occurs as such, glaucopsia predisposes an affected individual to physical accidents and reduces the ability to undertake skilled tasks such as driving a vehicle. Direct local contact with the liquid may produce eye damage which may be permanent in the case of the lower molecular weight species.
Chronic	Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial preumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis. Long-term exposure to respiratory inritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. On the basis, primarily, of animal experiments, the material may be regarded as carcinogenic to humans. There is sufficient evidence to provide a strong presumption that human exposure to the material may result in cancer on the basis of: - appropriate long-term animal studies - other relevant information Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Limited evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a significant number of individuals at a greater frequency than would be expected from the response of a normal population. Pulmonary sensitisation, requiring the nyberactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may presist for extended periods, even after exposure cases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking. Allergic reactions to benzoic acid harve been reported. Of 100 patients with asthma undergoing provocation tests with benzoic acid, 47 showed positive reactions. In a further work there was no significant objective or subjective skin response to two 500-

SV100 Epoxy White Base Part B			
BuserantB	Not Available	Not Available	
	TOXICITY	IRRITATION	
	Oral (rat) LD50: :910 mg/kg** ^[2]	[* = Manufacture	er CG]
rimethylhexamethylene		[** = Manufactu	rer Degussa]
diamine		Eye (rabbit): Co	rrosive *
		Sensitiser **	
		Skin (rabbit): Co	prrosive *
	ΤΟΧΙΟΙΤΥ	IRRITATION	
	Dermal (rabbit) LD50: 805 mg/kgE ^[2]	Eve (rabbit):20 mg	1/24 h - moderate
triethylenetetramine	Oral (rat) LD50: 2500 mg/kgE ^[2]	Eye (rabbit): 49 mg	,
litettytenetettaliine		Skin (rabbit): 490 r	5
		Skin (rabbit): 5 mg	
	ΤΟΧΙΟΙΤΥ		IRRITATION
naphtha petroleum,	Dermal (rabbit) LD50: >1900 mg/kg ^[1]		Nil reported
light aromatic solvent	Inhalation (rat) LC50: >3670 ppm/8 h *[2]		
	Oral (rat) LD50: >4500 mg/kg ^[1]		
isophorone diamine	ΤΟΧΙΟΙΤΥ	IRRITAT	ΓΙΟΝ
	Oral (rat) LD50: 1030 mg/kg] ^[2] [Manufacturer HUE]		facturer HUE]
Legend:	1. Value obtained from Europe ECHA Registered Unless otherwise specified data extracted from		
SV100 Epoxy White E Pa	 The following information refers to contact allergies quickly manifest them. The pathogenesis of contact eczema im type. Other allergic skin reactions, e.g. 4 significance of the contact allergen is not substance and the opportunities for con widely distributed can be a more importat individuals come into contact. From a cl test reaction in more than 1% of the per Asthma-like symptoms may continue for be due to a non-allergenic condition knot following exposure to high levels of high absence of preceding respiratory disease symptoms within minutes to hours of a spirometry, with the presence of modera and the lack of minimal lymphocytic infla diagnosis of RADS. RADS (or asthma) for the concentration of and duration of exposen ature) and is completely reversible after mucus production. 	selves as contact eczema, more ra volves a cell-mediated (T lymphocy contact urticaria, involve antibody-r ot simply determined by its sensitis tact with it are equally important. A ant allergen than one with stronger s inical point of view, substances are sons tested. In months or even years after expos- tor months or even years after expos- own as reactive airways dysfunction hy irritating compound. Key criteria te, in a non-atopic individual, with a documented exposure to the irritant ate to severe bronchial hyperreactive ammation, without eosinophilia, hav ollowing an irritating inhalation is ar osure to the irritating substance. In sure due to high concentrations of i	arely as urticaria or Quincke's oedema. ytes) immune reaction of the delayed mediated immune reactions. The sation potential: the distribution of the weakly sensitising substance which is sensitising potential with which few e noteworthy if they produce an allergic sure to the material ceases. This may n syndrome (RADS) which can occur a for the diagnosis of RADS include the abrupt onset of persistent asthma-like t. A reversible airflow pattern, on vity on methacholine challenge testing ve also been included in the criteria for n infrequent disorder with rates related to dustrial bronchitis, on the other hand, is irritating substance (often particulate in

and dermal exposures are the most important routes of absorption although systemic intoxication from dermal absorption is not likely to occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption . 1,2,4-Trimethylbenzene is lipophilic and may accumulate in fat and fatty tissues. In the blood stream, approximately 85% of the chemical is bound to red blood cells. Metabolism occurs by

side-chain oxidation to form alcohols and carboxylic acids which are then conjugated with glucuronic acid, glycine, or sulfates for urinary excretion. After a single oral dose to rats of 1200 mg/kg, urinary metabolites consisted of approximately 43.2% glycine, 6.6% glucuronic, and 12.9% sulfuric acid conjugates. The two principle metabolites excreted by rabbits after oral administration of 438 mg/kg/day for 5 days were 2,4-dimethylbenzoic acid and 3,4-dimethylhippuric acid. The major routes of excretion of 1,2,4-trimethyl- benzene are exhalation of parent compound and elimination of urinary metabolites. Half-times for urinary metabolites were reported as 9.5 hours for glycine, 22.9 hours for glucuronide, and 37.6 hours for sulfuric acid conjugates.

Acute Toxicity Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin and breathing the vapor is irritating to the respiratory tract causing pneumonitis. Breathing high concentrations of the chemical vapor causes headache, fatigue, and drowsiness. In humans liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of vapor causes chemical pneumonitis . High concentrations of vapor (5000-9000 ppm) cause headache, fatigue, and drowsiness . The concentration of 5000 ppm is roughly equivalent to a total of 221 mg/kg assuming a 30 minute exposure period (see end note 1). 2. Animals - Mice exposed to 8130-9140 ppm 1,2,4-trimethylbenzene (no duration given) had loss of righting response and loss of reflexes Direct dermal contact with the chemical (no species given) causes vasodilation, erythema, and irritation (U.S. EPA). Seven of 10 rats died after an oral dose of 2.5 mL of a mixture of trimethylbenzenes in olive oil (average dose approximately 4.4 g/kg) . Rats and mice were exposed by inhalation to a coal tar distillate containing about 70% 1,3,5- and 1,2,4-trimethylbenzene; no pathological changes were noted in either species after exposure to 1800-2000 ppm for up to 48 continuous hours, or in rats after 14 exposures of 8 hours each at the same exposure levels . No effects were reported for rats exposed to a mixture of trimethyl-benzenes at 1700 ppm for 10 to 21 days

Neurotoxicity 1,2,4-Trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures containing the chemical causes headache, fatigue, nervousness, and drowsiness. Occupationally, workers exposed to a solvent containing 50% 1,2,4-trimethylbenzene had nervousness, headaches, drowsiness, and vertigo (U.S. EPA). Headache, fatigue, and drowsiness were reported for workers exposed (no dose given) to paint thinner containing 80% 1,2,4- and 1,3,5-trimethylbenzenes

Results of the developmental toxicity study indicate that the C9 fraction caused adverse neurological effects at the highest dose (1500 ppm) tested.

Subchronic/Chronic Toxicity Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension, and bronchitis. Painters that worked for several years with a solvent containing 50% 1,2,4- and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anemia, and alterations in blood clotting; haematological effects may have been due to trace amounts of benzene Rats given 1,2,4-trimethylbenzene orally at doses of 0.5 or 2.0 g/kg/day, 5 days/week for 4 weeks. All rats exposed to the high dose died and 1 rat in the low dose died (no times given); no other effects were reported. Rats exposed by inhalation to 1700 ppm of a trimethylbenzene isomeric mixture for 4 months had decreased weight gain, lymphopenia and neutrophilia .

Genotoxicity: Results of mutagenicity testing, indicate that the C9 fraction does not induce gene mutations in prokaryotes (Salmonella tymphimurium/mammalian microsome assay); or in mammalian cells in culture (in Chinese hamster ovary cells with and without activation). The C9 fraction does not does not induce chromosome mutations in Chinese hamster ovary cells with and without activation; does not induce chromosome aberrations in the bone marrow of Sprague-Dawley rats exposed by inhalation (6 hours/day for 5 days); and does not induce sister chromatid exchange in Chinese hamster ovary cells with and without activation.

Developmental/Reproductive Toxicity: A three-generation reproductive study on the C9 fraction was conducted CD rats (30/sex/group) were exposed by inhalation to the C9 fraction at concentrations of 0, 100, 500, or 1500 ppm (0, 100, 500, or 1500 mg/kg/day) for 6 hours/day, 5 days/week. There was evidence of parental and reproductive toxicity at all dose levels. Indicators of parental toxicity included reduced body weights, increased salivation, hunched posture, aggressive behavior, and death. Indicators of adverse reproductive system effects included reduced litter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established Developmental toxicity, including possible develop- mental neurotoxicity, was evident in rats in a 3-generation reproductive study

No effects on fecundity or fertility occurred in rats treated dermally with up to 0.3 mL/rat/day of a mixture of trimethyl- benzenes, 4-6 hours/day, 5 days/week over one generation

For C9 aromatics (typically trimethylbenzenes - TMBs)

Acute Toxicity

Acute toxicity studies (oral, dermal and inhalation routes of exposure) have been conducted in rats using various solvent products containing predominantly mixed C9 aromatic hydrocarbons (CAS RN 64742-95-6). Inhalation LC50's range from 6,000 to 10,000 mg/m 3 for C9 aromatic naphtha and 18,000 to 24,000 mg/m 3 for 1,2,4 and 1,3,5-TMB, respectively. A rat oral LD50 reported for 1,2,4-TMB is 5 grams/kg bw and a rat dermal LD50 for the C9 aromatic naphtha is >4 ml/kg bw. These data indicate that C9 aromatic solvents show that LD50/LC50 values are greater than limit doses for acute toxicity studies established under OECD test guidelines. Irritation and Sensitization

Several irritation studies, including skin, eye, and lung/respiratory system, have been conducted on members of the category. The results indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the respiratory tract and cause depression of respiratory rates in mice. Respiratory irritation is a key endpoint in the current occupational exposure limits established for C9 aromatic hydrocarbon solvents and trimethylbenzenes. No evidence of skin sensitization was identified.

Repeated Dose Toxicity

Inhalation: The results from a subchronic (3 month) neurotoxicity study and a one-year chronic study (6 hr/day, 5 days/week) indicate that effects from inhalation exposure to C9 Aromatic Hydrocarbon Solvents on systemic toxicity are slight. A battery of neurotoxicity and neurobehavioral endpoints were evaluated in the 3-month inhalation study on C9 aromatic naphtha tested at concentrations of 0, 101, 452, or 1320 ppm (0, 500, 2,220, or 6,500 mg/m3). In this study, other than a transient weight reduction in the high exposure group (not statistically

significant at termination of exposures), no effects were reported on neuropathology or neuro/behavioral parameters. The NOAEL for systemic and/or neurotoxicity was 6,500 mg/m3, the highest concentration tested. In an inhalation study of a commercial blend, rats were exposed to C9 aromatic naphtha concentrations of 0, 96, 198, or 373 ppm (0, 470, 970, 1830 mg/m3) for 6 hr/day, 5 days/week, for 12 months. Liver and kidney weights were increased in the high exposure group but no accompanying histopathology was observed in these organs. The NOAEL was considered to be the high exposure level of 373 ppm, or 1830 mg/m3. In two subchronic rat inhalation studies, both of three months duration, rats were exposed to the individual TMB isomers (1,2,4-and 1,3,5-) to nominal concentrations of 0, 25, 100, or 250 ppm (0, 123, 492, or 1230 mg/m3). Respiratory irritation was observed at 492 (100 ppm) and 1230 mg/m3 (250 ppm) and no systemic toxicity was observed in either study. For both pure isomers, the NOELs are 25 ppm or 123 mg/m3 for respiratory irritation and 250 ppm or 1230 mg/m3 for systemic effects.

Oral: The C9 aromatic naphtha has not been tested via the oral route of exposure. Individual TMB isomers have been evaluated in a series of repeated-dose oral studies ranging from 14 days to 3 months over a wide range of doses. The effects observed in these studies included increased liver and kidney weights, changes in blood chemistry, increased salivation, and decreased weight gain at higher doses. Organ weight changes appeared to be adaptive as they were not accompanied by histopathological effects. Blood changes appeared sporadic and without pattern. One study reported hyaline droplet nephropathy in male rats at the highest dose (1000 mg/kg bw-day), an effect that is often associated with alpha-2mu-globulin-induced nephropathy and not considered relevant to humans. The doses at which effects were detected were 100 mg/kg-bw day or above (an exception was the pilot 14 day oral study - LOAEL 150 mg/kg bw-day - but the follow up three month study had a LOAEL of 600 mg/kg/bw-day with a NOAEL of 200 mg/kg bw-day). Since effects generally were not severe and could be considered adaptive or spurious, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers.

Mutagenicity

In vitro genotoxicity testing of a variety of C9 aromatics has been conducted in both bacterial and mammalian cells. In vitro point mutation tests were conducted with Salmonella typhimurium and Escherichia coli bacterial strains, as well as with cultured mammalian cells such as the Chinese hamster cell ovary cells (HGPRT assay) with and without metabolic activation. In addition, several types of in vitro chromosomal aberration tests have been performed (chromosome aberration frequency in Chinese hamster ovary and lung cells, sister chromatid exchange in CHO cells). Results were negative both with and without metabolic activation for all category members. For the supporting chemical 1,2,3-TMB, a single in vitro chromosome aberration test was weakly positive. In in vivo bone marrow cytogenetics test, rats were exposed to C9 aromatic naphtha at concentrations of 0, 153, 471, or 1540 ppm (0, 750, 2,310, or 7,560 mg/m3) 6 hr/day, for 5 days. No evidence of in vivo somatic cell genotoxicity was detected. Based on the cumulative results of these assays, genetic toxicity is unlikely for substances in the C9 Aromatic Hydrocarbon Solvents Category

Reproductive and Developmental Toxicity

Results from the three-generation reproduction inhalation study in rats indicate limited effects from C9 aromatic naphtha. In each of three generations (F0, F1 and F2), rats were exposed to High Flash Aromatic Naphtha (CAS RN 64742-95-6) via whole body inhalation at target concentrations of 0, 100, 500, or 1500 ppm (actual mean concentrations throughout the full study period were 0, 103, 495, or 1480 ppm, equivalent to 0, 505, 2430, or 7265 mg/m3 , respectively). In each generation, both sexes were exposed for 10 weeks prior to and two weeks during mating for 6 hrs/day, 5 days/wks. Female rats in the F0, F1, and F2 generation were then exposed during gestation days 0-20 and lactation days 5-21 for 6 hrs/day, 7 days/wk. The age at exposure initiation differed among generations; F0 rats were exposed starting at 9 weeks of age, F1 exposure began at 5-7 weeks, and F2 exposure began at postnatal day (PND) 22. In the F0 and F1 parental generations, 30 rats/sex/group were exposed and mated. However, in the F2 generation, 40/sex/group were initially exposed due to concerns for toxicity, and 30/sex /group were randomly selected for mating, except that all survivors were used at 1480 ppm. F3 litters were not exposed directly and were sacrificed on lactation day 21.

Systemic Effects on Parental Generations:

The F0 males showed statistically and biologically significantly decreased mean body weight by ~15% at 1480 ppm when compared with controls. Seven females died or were sacrificed in extremis at 1480 ppm. The F0 female rats in the 495 ppm exposed group had a 13% decrease in body weight gain when adjusted for initial body weight when compared to controls. The F1 parents at 1480 ppm had statistically significantly decreased mean body weights (by ~13% (females) and 22% (males)), and locomotor activity. F1 parents at 1480 ppm had increased ataxia and mortality (six females). Most F2 parents (70/80) exposed to 1480 ppm died within the first week. The remaining animals survived throughout the rest of the exposure period. At week 4 and continuing through the study, F2 parents at 1480 ppm had statistically significant mean body weights much lower than controls (~33% for males; ~28% for females); body weights at 495 ppm were also reduced significantly (by 13% in males and 15% in females). The male rats in the 495 ppm exposed group had a 12% decrease in body weight gain when adjusted for initial body weight when compared to controls. Based on reduced body weight observed, the overall systemic toxicity LOAEC is 495 ppm (2430 mg/m3).

Reproductive Toxicity-Effects on Parental Generations: There were no pathological changes noted in the reproductive organs of any animal of the F0, F1, or F2 generation. No effects were reported on sperm morphology, gestational period, number of implantation sites, or post-implantation loss in any generation. Also, there were no statistically or biologically significant differences in any of the reproductive parameters, including: number of mated females, copulatory index, copulatory interval, number of females delivering a litter, number of females delivering a litter, or male fertility in the F0 or in the F2 generation. Male fertility was statistically significantly reduced at 1480 ppm in the F1 rats. However, male fertility was not affected in the F0 or in the F2 generations; therefore, the biological significance of this change is unknown and may or may not be attributed to the test substance. No reproductive effects were observed in the F0 or F1 dams exposed to 1480 ppm (7265 mg/m3). Due to excessive mortality at the highest concentration (1480 ppm, only six dams available) in the F2 generation, a complete evaluation is precluded. However, no clear signs of reproductive toxicity were observed in the F2

generation. Therefore, the reproductive NOAEC is considered 495 ppm (2430 mg/m3), which excludes analysis of the highest concentration due to excessive mortality. Developmental Toxicity - Effects on Pups: Because of significant maternal toxicity (including mortality) in dams in

all generations at the highest concentration (1480 ppm), effects in offspring at 1480 ppm are not reported here. No significant effects were observed in the F1 and F2 generation offspring at 103 or 495 ppm. However, in F3 offspring, body weights and body weight gain were reduced by ~ 10-11% compared with controls at 495 ppm for approximately a week (PND 14 through 21). Maternal body weight was also depressed by ~ 12% throughout the gestational period compared with controls. The overall developmental LOAEC from this study is 495 ppm (2430 mg/m3) based on the body weights reductions observed in the F3 offspring.

Conclusion: No effects on reproductive parameters were observed at any exposure concentration, although a confident assessment of the group exposed at the highest concentration was not possible. A potential developmental effect (reduction in mean pup weight and weight gain) was observed at a concentration that was also associated with maternal toxicity.

For isophorone diamine

Based on a limited skin irritation study with rabbits and rats, isophorone diamine is deemed to be a strong irritant (duration of the exposure not reported) and corrosive after repeated application. Isophorone diamine is corrosive to the eyes of rabbits when tested according to OECD TG 405. Isophorone diamine was found to induce dermal sensitisation when tested according to OECD TG 406 in guinea pigs. From a number of publications there is evidence that frequent occupational exposure to isophorone diamine may lead to the development of allergic contact dermatitis in humans. No definite conclusion can be currently drawn on respiratory sensitisation. From two 14-day inhalative exposure studies with rats no NOAEL could be determined. At the first study's LOAEL of 18 mg/m3, degeneration/necrosis in the olfactory epithelium of the nose were observed. Trachea, larynx and lungs were affected at 200 mg/m3 and above (degeneration/necrosis, hyperplasia, squamous metaplasia). At the LOAEL of the follow-up study, i.e. at 2.2 mg/m3, reversible minimal to mild degeneration of respiratory nasal mucosa in the anterior dorsal nose was observed. In a subchronic drinking water study according to OECD TG 408, the administration of 150 mg/kg bw/day led to reduced absolute and relative kidney weights in male and female rats (histopathology being indicative for tubular nephrosis), while 59 mg/kg bw/day (males) and 62 mg/kg bw/day (females) were determined as a NOAEL.

Isophorone diamine was not mutagenic in bacteria and mammalian cell systems *in vitro* (Ames test according to Directive 84/449/EEC B.14 (1984) and HPRT test according to OECD TG 476 (1984)). It did not induce chromosomal aberrations in CHO cells *in vitro* in a test performed in accordance with OECD TG 473. *In vivo* mouse micronucleus tests (one performed according to OECD TG 474 (1983) for the induction of micronucleated polychromatic erythrocytes were clearly negative. From all *in vitro* and *in vivo* tests performed there is no evidence that isophorone diamine has a mutagenic or clastogenic potential.

No studies have been performed on the toxicity of isophorone diamine to reproduction.

Data from an oral 90-day study in rats according to OECD TG 408 did not reveal any adverse effects on the male and female reproductive organs.

Isophorone diamine did not show any teratogenic or embryofoetotoxic effects in a gavage study with rats performed in accordance with OECD TG 414 (2001) up to and including the highest tested dose level of 250 mg/kg bw/day. The NOAEL for maternal toxicity was 50 mg/kg bw/day, effects at 250 mg/kg bw/day were reduced food consumption and reduced body weight gain. The NOAEL for developmental toxicity is 250 mg/kg bw/day. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce respiratory tract irritation. Symptoms of pulmonary irritation may include coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and a burning sensation.

Unlike most organs, the lung can respond to a chemical insult or a chemical agent, by first removing or neutralising the irritant and then repairing the damage (inflammation of the lungs may be a consequence).

The repair process (which initially developed to protect mammalian lungs from foreign matter and antigens) may, however, cause further damage to the lungs (fibrosis for example) when activated by hazardous chemicals. Often, this results in an impairment of gas exchange, the primary function of the lungs. Therefore prolonged exposure to respiratory irritants may cause sustained breathing difficulties.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

For benzyl alkyl alcohols:

Unlike benzylic alcohols, the beta-hydroxyl group of the members of this cluster is unlikely to undergo phase II metabolic activation. Instead, the beta-hydroxyl group is expected to contribute to detoxification via oxidation to hydrophilic acid. Despite structural similarity to carcinogenic ethyl benzene, only a marginal concern has been assigned to phenethyl alcohol due to limited mechanistic analogy. For benzoates:

Acute toxicity: Benzyl alcohol, benzoic acid and its sodium and potassium salt can be considered as a single category regarding human health, as they are all rapidly metabolised and excreted via a common pathway within 24 hrs. Systemic toxic effects of similar nature (e.g. liver, kidney) were observed. However with benzoic acid and its salts toxic effects are seen at higher doses than with benzyl alcohol.

The compounds exhibit low acute toxicity as for the oral and dermal route. The LD50 values are > 2000 mg/kg bw except for benzyl alcohol which needs to be considered as harmful by the oral route in view of an oral LD50 of 1610 mg/kg bw. The 4 hrs inhalation exposure of benzyl alcohol or benzoic acid at 4 and 12 mg/l as aerosol/dust respectively gave no mortality, showing low acute toxicity by inhalation for these compounds.

Benzoic acid and benzyl alcohol are slightly irritating to the skin, while sodium benzoate was not skin irritating. No

data are available for potassium benzoate but it is also expected not to be skin irritating. Benzoic acid and benzyl alcohol are irritating to the eye and sodium benzoate was only slightly irritating to the eye. No data are available for potassium benzoate but it is expected also to be only slightly irritating to the eye.

Sensitisation: The available studies for benzoic acid gave no indication for a sensitising effect in animals, however occasionally very low positive reactions were recorded with humans (dermatological patients) in patch tests. The same occurs for sodium benzoate. It has been suggested that the very low positive reactions are non-immunologic contact urticaria. Benzyl alcohol gave positive and negative results in animals. Benzyl alcohol also demonstrated a maximum incidence of sensitization of only 1% in human patch testing. Over several decades no sensitization with these compounds has been seen among workers.

Repeat dose toxicity: For benzoic acid repeated dose oral toxicity studies give a NOAEL of 800 mg/kg/day. For the salts values > 1000 mg/kg/day are obtained. At higher doses increased mortality, reduced weight gain, liver and kidney effects were observed.

For benzyl alcohol the long-term studies indicate a NOAEL > 400 mg/kg bw/d for rats and > 200 mg/kg bw/d for mice. At higher doses effects on bodyweights, lesions in the brains, thymus, skeletal muscle and kidney were observed. It should be taken into account that administration in these studies was by gavage route, at which saturation of metabolic pathways is likely to occur.

Mutagenicity: All chemicals showed no mutagenic activity in *in vitro* Ames tests. Various results were obtained with other *in vitro* genotoxicity assays. Sodium benzoate and benzyl alcohol showed no genotoxicity *in vivo*. While some mixed and/or equivocal *in vitro* chromosomal/chromatid responses have been observed, no genotoxicity was observed in the *in vivo* cytogenetic, micronucleus, or other assays. The weight of the evidence of the *in vitro* and *in vivo* genotoxicity data indicates that these chemicals are not mutagenic or clastogenic. They also are not carcinogenic in long-term carcinogenicity studies.

In a 4-generation study with benzoic acid no effects on reproduction were seen (NOAEL: 750 mg/kg). No compound related effects on reproductive organs (gross and histopathology examination) could be found in the (sub) chronic studies in rats and mice with benzyl acetate, benzyl alcohol, benzaldehyde, sodium benzoate and supports a non-reprotoxic potential of these compounds. In addition, data from reprotoxicity studies on benzyl acetate (NOAEL >2000 mg/kg bw/d; rats and mice) and benzaldehyde (tested only up to 5 mg/kg bw; rats) support the non-reprotoxicity of benzyl alcohol and benzoic acid and its salts.

Developmental toxicity: In rats for sodium benzoate dosed via food during the entire gestation developmental effects occurred only in the presence of marked maternal toxicity (reduced food intake and decreased body weight) (NOAEL = 1400 mg/kg bw). For hamster (NOEL: 300 mg/kg bw), rabbit (NOEL: 250 mg/kg bw) and mice (CD-1 mice, NOEL: 175 mg/kg bw) no higher doses (all by gavage) were tested and no maternal toxicity was observed. For benzyl alcohol: NOAEL= 550 mg/kg bw (gavage; CD-1 mice). LOAEL = 750 mg/kg bw (gavage mice). In this study maternal toxicity was observed e.g. increased mortality, reduced body weight and clinical toxicology. Benzyl acetate: NOEL = 500 mg/kg bw (gavage rats). No maternal toxicity was observed.

While it is difficult to generalise about the full range of potential health effects posed by exposure to the many different amine compounds, characterised by those used in the manufacture of polyurethane and polyisocyanurate foams, it is agreed that overexposure to the majority of these materials may cause adverse health effects.

- Many amine-based compounds can induce histamine liberation, which, in turn, can trigger allergic and other physiological effects, including bronchoconstriction or bronchial asthma and rhinitis.
- Systemic symptoms include headache, nausea, faintness, anxiety, a decrease in blood pressure, tachycardia (rapid heartbeat), itching, erythema (reddening of the skin), urticaria (hives), and facial edema (swelling).
 Systemic effects (those affecting the body) that are related to the pharmacological action of amines are usually transient.

Typically, there are four routes of possible or potential exposure: inhalation, skin contact, eye contact, and ingestion.

Inhalation:

Inhalation of vapors may, depending upon the physical and chemical properties of the specific product and the degree and length of exposure, result in moderate to severe irritation of the tissues of the nose and throat and can irritate the lungs.

Products with higher vapour pressures have a greater potential for higher airborne concentrations. This increases the probability of worker exposure.

Higher concentrations of certain amines can produce severe respiratory irritation, characterised by nasal discharge, coughing, difficulty in breathing, and chest pains.

Chronic exposure via inhalation may cause headache, nausea, vomiting, drowsiness, sore throat,

bronchopneumonia, and possible lung damage. Also, repeated and/or prolonged exposure to some amines may result in liver disorders, jaundice, and liver enlargement. Some amines have been shown to cause kidney, blood, and central nervous system disorders in laboratory animal studies.

While most polyurethane amine catalysts are not sensitisers, some certain individuals may also become sensitized to amines and may experience respiratory distress, including asthma-like attacks, whenever they are subsequently exposed to even very small amounts of vapor. Once sensitised, these individuals must avoid any further exposure to amines. Although chronic or repeated inhalation of vapor concentrations below hazardous or recommended exposure limits should not ordinarily affect healthy individuals, chronic overexposure may lead to permanent pulmonary injury, including a reduction in lung function, breathlessness, chronic bronchitis, and immunologic lung disease.

Inhalation hazards are increased when exposure to amine catalysts occurs in situations that produce aerosols, mists, or heated vapors. Such situations include leaks in fitting or transfer lines. Medical conditions generally aggravated by inhalation exposure include asthma, bronchitis, and emphysema.

Skin Contact:

Skin contact with amine catalysts poses a number of concerns. Direct skin contact can cause moderate to severe irritation and injury-i.e., from simple redness and swelling to painful blistering, ulceration, and chemical burns. Repeated or prolonged exposure may also result in severe cumulative dermatitis.

	Skin contact with some amines may result in allergic sensitisation. Sensitised persons should avoid all contact with amine catalysts. Systemic effects resulting from the absorption of the amines through skin exposure may include headaches, nausea, faintness, anxiety, decrease in blood pressure, reddening of the skin, hives, and facial swelling. These symptoms may be related to the pharmacological action of the amines, and they are usually transient. Eye Contact: Amine catalysts are alkaline in nature and their vapours are irritating to the eyes, even at low concentrations. Direct contact with the liquid amine may cause severe irritation and tissue injury, and the "burning" may lead to blindness. (Contact with solid products may result in mechanical irritation, pain, and corneal injury.) Exposed persons may experience excessive tearing, burning, conjunctivitis, and corneal swelling. The corneal swelling may manifest itself in visual disturbances such as blurred or "foggy" vision with a blue tint ("blue haze") and sometimes a halo phenomenon around lights. These symptoms are transient and usually disappear when exposure ceases. Some individuals may experience this effect even when exposed to concentrations below doses that ordinarily cause respiratory irritation. Ingestion: The oral toxicity of amine catalysts varies from moderately to very toxic. Some amines can cause severe irritation, ulceration, or burns of the mouth, throat, esophagus, and gastrointestinal tract. Material aspirated (due to vomiting) can damage the bronchial tubes and the lungs. Affected persons also may experience pain in the chest or abdomen, nausea, bleeding of the throat and the gastrointestinal tract, diarrhea, dizziness, drowsiness, thirst, circulatory collapse, coma, and even death. Polyurethane Amine Catalysts: Guidelines for Safe Handling and Disposal; Technical Bulletin June 2000 Alliance for Polyurethanes Industry
TRIMETHYLHEXAMETHYLENE DIAMINE	The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Ouincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, eq. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. While it is difficult to generalise about the full range of potential health effects posed by exposure to the many different amine compounds, characterised by those used in the manufacture of polyurethane and polyisocyanurate foams, it is agreed that overexposure to the majority of these materials may cause adverse health effects. • Many amine-based compounds can induce histamine liberation, which, in turn, can trigger allergic and other physiological effects, includin by the tester, nause, a finitness, anxite, a decrease in blood pressure, tachycardia (rapid heartbeat), itching, erythema (reddening of the skin), urticaria (hives), and facial dema (swelling). Systemic effects (those affecting the body) that are related to the pharmacological action of amines are usually transient. Typically, there are four routes of possible or potential exposure: inhalation, skin contact, eye contact, and ingestion. Inhalation Inhalation of vapors may, depending upon the physical and chemical properties of the nose and throat and can irritate the lungs. Products with higher vapour pressures have

Skin contact with amine catalysts poses a number of concerns. Direct skin contact can cause moderate to severe irritation and injury-i.e., from simple redness and swelling to painful blistering, ulceration, and chemical burns. Repeated or prolonged exposure may also result in severe cumulative dermatitis.

Skin contact with some amines may result in allergic sensitisation. Sensitised persons should avoid all contact with amine catalysts. Systemic effects resulting from the absorption of the amines through skin exposure may include headaches, nausea, faintness, anxiety, decrease in blood pressure, reddening of the skin, hives, and facial swelling. These symptoms may be related to the pharmacological action of the amines, and they are usually transient.

Eye Contact:

Amine catalysts are alkaline in nature and their vapours are irritating to the eyes, even at low concentrations. Direct contact with the liquid amine may cause severe irritation and tissue injury, and the "burning" may lead to blindness. (Contact with solid products may result in mechanical irritation, pain, and corneal injury.) Exposed persons may experience excessive tearing, burning, conjunctivitis, and corneal swelling. The corneal swelling may manifest itself in visual disturbances such as blurred or "foggy" vision with a blue tint ("blue haze") and sometimes a halo phenomenon around lights. These symptoms are transient and usually disappear when exposure ceases.

Some individuals may experience this effect even when exposed to concentrations below doses that ordinarily cause respiratory irritation.

Ingestion:

The oral toxicity of amine catalysts varies from moderately to very toxic.

Some amines can cause severe irritation, ulceration, or burns of the mouth, throat, esophagus, and gastrointestinal tract.

Material aspirated (due to vomiting) can damage the bronchial tubes and the lungs.

Affected persons also may experience pain in the chest or abdomen, nausea, bleeding of the throat and the gastrointestinal tract, diarrhea, dizziness, drowsiness, thirst, circulatory collapse, coma, and even death. Polyurethane Amine Catalysts: Guidelines for Safe Handling and Disposal; Technical Bulletin June 2000 Alliance for Polyurethanes Industry

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The material may produce respiratory tract irritation. Symptoms of pulmonary irritation may include coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and a burning sensation.

Unlike most organs, the lung can respond to a chemical insult or a chemical agent, by first removing or neutralising the irritant and then repairing the damage (inflammation of the lungs may be a consequence).

The repair process (which initially developed to protect mammalian lungs from foreign matter and antigens) may, however, cause further damage to the lungs (fibrosis for example) when activated by hazardous chemicals. Often, this results in an impairment of gas exchange, the primary function of the lungs. Therefore prolonged exposure to respiratory irritants may cause sustained breathing difficulties.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

TRIETHYLENETETRAMINE

Handling ethyleneamine products is complicated by their tendency to react with other chemicals, such as carbon dioxide in the air, which results in the formation of solid carbamates. Because of their ability to produce chemical burns, skin rashes, and asthma-like symptoms, ethyleneamines also require substantial care in handling. Higher molecular weight ethyleneamines are often handled at elevated temperatures further increasing the possibility of vapor exposure to these compounds.

Because of the fragility of eye tissue, almost any eye contact with any ethyleneamine may cause irreparable damage, even blindness. A single, short exposure to ethyleneamines, may cause severe skin burns, while a single, prolonged exposure may result in the material being absorbed through the skin in harmful amounts. Exposures have

caused allergic skin reactions in some individuals. Single dose oral toxicity of ethyleneamines is low. The oral LD50 for rats is in the range of 1000 to 4500 mg/kg for the ethyleneamines.

In general, the low-molecular weight polyamines have been positive in the Ames assay, increase sister chromatid exchange in Chinese hamster ovary (CHO) cells, and are positive for unscheduled DNA synthesis although they are negative in the mouse micronucleus assay. It is believed that the positive results are based on its ability to chelate copper

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis.

Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration.

For alkyl polyamines:

The alkyl polyamines cluster consists of organic compounds containing two terminal primary amine groups and at least one secondary amine group. Typically these substances are derivatives of ethylenediamine, propylenediamine or hexanediamine. The molecular weight range for the entire cluster is relatively narrow, ranging from 103 to 232 Acute toxicity of the alkyl polyamines cluster is low to moderate via oral exposure and a moderate to high via dermal exposure. Cluster members have been shown to be eye irritants, skin irritants, and skin sensitisers in experimental animals. Repeated exposure in rats via the oral route indicates a range of toxicity from low to high hazard. Most cluster members gave positive results in tests for potential genotoxicity.

Limited carcinogenicity studies on several members of the cluster showed no evidence of carcinogenicity. Unlike aromatic amines, aliphatic amines are not expected to be potential carcinogens because they are not expected to undergo metabolic activation, nor would activated intermediates be stable enough to reach target macromolecules. Polyamines potentiate NMDA induced whole-cell currents in cultured striatal neurons

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Triethylenetetramine (TETA) is a severe irritant to skin and eyes and induces skin sensitisation.

TETA is of moderate acute toxicity: LD50(oral, rat) > 2000 mg/kg bw, LD50(dermal, rabbit) = 550 - 805 mg/kg bw. Acute exposure to saturated vapour via inhalation was tolerated without impairment. Exposure to to aerosol leads to reversible irritations of the mucous membranes in the respiratory tract.

Following repeated oral dosing via drinking water only in mice but not in rats at concentration of 3000 ppm there were signs of impairment. The NOAEL is 600 ppm [92 mg/kg bw (oral, 90 days)]. Lifelong dermal application to mice (1.2 mg/mouse) did not result in tumour formation.

There are differing results of the genetic toxicity for TETA. The positive results of the in vitro tests may be the result of a direct genetic action as well as a result of an interference with essential metal ions. Due to this uncertainty of the in vitro tests, the genetic toxicity of TETA has to be assessed on the basis of in vivo tests. The in vivo micronucleus tests (i.p. and oral) and the SLRL test showed negative results.

There are no human data on reproductive toxicity (fertility assessment). The analogue diethylenetriamine had no effects on reproduction. TETA shows developmental toxicity in animal studies if the chelating property of the substance is effective. The NOEL is 830 mg/kg bw (oral).

Experience with female patients suffering from Wilson's disease demonstrated that no miscarriages and no foetal abnormalities occur during treatment with TETA.

In rats, there are several studies concerning developmental toxicity. The oral treatment of rats with 75, 375 and 750 mg/kg resulted in no effects on dams and fetuses, except slight increased fetal body weight After oral treatment of rats with 830 or 1670 mg/kg bw only in the highest dose group increased foetal abnormalities in 27/44 fetus (69,2%) were recorded, when simultaneously the copper content of the feed was reduced. Copper supplementation in the feed reduced significant the fetal abnormalities of the highest dose group to 3/51 (6,5% foetus. These findings suggest that the developmental toxicity is produced as a secondary consequence of the chelating properties of TETA.

Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the

absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

For trimethylbenzenes:

Absorption of 1,2,4-trimethylbenzene occurs after oral, inhalation, or dermal exposure. Occupationally, inhalation and dermal exposures are the most important routes of absorption although systemic intoxication from dermal absorption is not likely to occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption . 1,2,4-Trimethylbenzene is lipophilic and may accumulate in fat and fatty tissues. In the blood stream, approximately 85% of the chemical is bound to red blood cells Metabolism occurs by side-chain oxidation to form alcohols and carboxylic acids which are then conjugated with glucuronic acid, glycine, or sulfates for urinary excretion . After a single oral dose to rats of 1200 mg/kg, urinary metabolites consisted of approximately 43.2% glycine, 6.6% glucuronic, and 12.9% sulfuric acid conjugates . The two principle metabolites excreted by rabbits after oral administration of 438 mg/kg/day for 5 days were 2,4-dimethylbenzoic acid and 3,4-dimethylhippuric acid . The major routes of excretion of 1,2,4-trimethyl- benzene are exhalation of parent compound and elimination of urinary metabolites. Half-times for urinary metabolites were reported as 9.5 hours for glycine, 22.9 hours for glucuronide, and 37.6 hours for sulfuric acid conjugates.

Acute Toxicity Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin and breathing the vapor is irritating to the respiratory tract causing pneumonitis. Breathing high concentrations of the chemical vapor causes headache, fatigue, and drowsiness. In humans liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of vapor causes chemical pneumonitis . High concentrations of vapor (5000-9000 ppm) cause headache, fatigue, and drowsiness . The concentration of 5000 ppm is roughly equivalent to a total of 221 mg/kg assuming a 30 minute exposure period (see end note 1). 2. Animals - Mice exposed to 8130-9140 ppm 1,2,4-trimethylbenzene (no duration given) had loss of righting response and loss of reflexes Direct dermal contact with the chemical (no species given) causes vasodilation, erythema, and irritation (U.S. EPA). Seven of 10 rats died after an oral dose of 2.5 mL of a mixture of trimethylbenzenes in olive oil (average dose approximately 4.4 g/kg) . Rats and mice were exposed by inhalation to a coal tar distillate containing about 70% 1,3,5- and 1,2,4-trimethylbenzene; no pathological changes were noted in either species after exposure to 1800-2000 ppm for up to 48 continuous hours, or in rats after 14 exposures of 8 hours each at the same exposure levels . No effects were reported for rats exposed to a mixture of trimethyl-benzenes at 1700 ppm for 10 to 21 days

Neurotoxicity 1,2,4-Trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures containing the chemical causes headache, fatigue, nervousness, and drowsiness. Occupationally, workers exposed to a solvent containing 50% 1,2,4-trimethylbenzene had nervousness, headaches, drowsiness, and vertigo (U.S. EPA). Headache, fatigue, and drowsiness were reported for workers exposed (no dose given) to paint thinner containing 80% 1,2,4- and 1,3,5-trimethylbenzenes

Results of the developmental toxicity study indicate that the C9 fraction caused adverse neurological effects at the highest dose (1500 ppm) tested.

Subchronic/Chronic Toxicity Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension, and bronchitis. Painters that worked for several years with a solvent containing 50% 1,2,4- and 30% 1,3,5-trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anemia, and alterations in blood clotting; haematological effects may have been due to trace amounts of benzene Rats given 1,2,4-trimethylbenzene orally at doses of 0.5 or 2.0 g/kg/day, 5 days/week for 4 weeks. All rats exposed to the high dose died and 1 rat in the low dose died (no times given); no other effects were reported. Rats exposed by inhalation to 1700 ppm of a trimethylbenzene isomeric mixture for 4 months had decreased weight gain, lymphopenia and neutrophilia .

Genotoxicity: Results of mutagenicity testing, indicate that the C9 fraction does not induce gene mutations in prokaryotes (Salmonella tymphimurium/mammalian microsome assay); or in mammalian cells in culture (in Chinese hamster ovary cells with and without activation). The C9 fraction does not does not induce chromosome mutations in Chinese hamster ovary cells with and without activation; does not induce chromosome aberrations in the bone marrow of Sprague-Dawley rats exposed by inhalation (6 hours/day for 5 days); and does not induce sister chromatid exchange in Chinese hamster ovary cells with and without activation.

Developmental/Reproductive Toxicity: A three-generation reproductive study on the C9 fraction was conducted CD rats (30/sex/group) were exposed by inhalation to the C9 fraction at concentrations of 0, 100, 500, or 1500 ppm (0, 100, 500, or 1500 mg/kg/day) for 6 hours/day, 5 days/week. There was evidence of parental and reproductive toxicity at all dose levels. Indicators of parental toxicity included reduced body weights, increased salivation, hunched posture, aggressive behavior, and death. Indicators of adverse reproductive system effects included reduced litter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established Developmental toxicity, including possible develop- mental neurotoxicity, was evident in rats in a 3-generation reproductive study

No effects on fecundity or fertility occurred in rats treated dermally with up to 0.3 mL/rat/day of a mixture of trimethyl- benzenes, 4-6 hours/day, 5 days/week over one generation

For C9 aromatics (typically trimethylbenzenes - TMBs)

Acute Toxicity

Acute toxicity studies (oral, dermal and inhalation routes of exposure) have been conducted in rats using various solvent products containing predominantly mixed C9 aromatic hydrocarbons (CAS RN 64742-95-6). Inhalation LC50's range from 6,000 to 10,000 mg/m 3 for C9 aromatic naphtha and 18,000 to 24,000 mg/m3 for 1,2,4 and

1,3,5-TMB, respectively. A rat oral LD50 reported for 1,2,4-TMB is 5 grams/kg bw and a rat dermal LD50 for the C9 aromatic naphtha is >4 ml/kg bw. These data indicate that C9 aromatic solvents show that LD50/LC50 values are greater than limit doses for acute toxicity studies established under OECD test guidelines. Irritation and Sensitization

Several irritation studies, including skin, eye, and lung/respiratory system, have been conducted on members of the category. The results indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the respiratory tract and cause depression of respiratory rates in mice. Respiratory irritation is a key endpoint in the current occupational exposure limits established for C9 aromatic hydrocarbon solvents and trimethylbenzenes. No evidence of skin sensitization was identified.

Repeated Dose Toxicity

Inhalation: The results from a subchronic (3 month) neurotoxicity study and a one-year chronic study (6 hr/day, 5 days/week) indicate that effects from inhalation exposure to C9 Aromatic Hydrocarbon Solvents on systemic toxicity are slight. A battery of neurotoxicity and neurobehavioral endpoints were evaluated in the 3-month inhalation study on C9 aromatic naphtha tested at concentrations of 0, 101, 452, or 1320 ppm (0, 500, 2,220, or 6,500 mg/m3). In this study, other than a transient weight reduction in the high exposure group (not statistically significant at termination of exposures), no effects were reported on neuropathology or neuro/behavioral parameters. The NOAEL for systemic and/or neurotoxicity was 6,500 mg/m3, the highest concentration tested. In an inhalation study of a commercial blend, rats were exposed to C9 aromatic naphtha concentrations of 0, 96, 198, or 373 ppm (0, 470, 970, 1830 mg/m3) for 6 hr/day, 5 days/week, for 12 months. Liver and kidney weights were increased in the high exposure group but no accompanying histopathology was observed in these organs. The NOAEL was considered to be the high exposure level of 373 ppm, or 1830 mg/m3. In two subchronic rat inhalation studies, both of three months duration, rats were exposed to the individual TMB isomers (1,2,4-and 1,3,5-) to nominal concentrations of 0, 25, 100, or 250 ppm (0, 123, 492, or 1230 mg/m3). Respiratory irritation was observed at 492 (100 ppm) and 1230 mg/m3 (250 ppm) and no systemic toxicity was observed in either study. For both pure isomers, the NOELs are 25 ppm or 123 mg/m3 for respiratory irritation and 250 ppm or 1230 mg/m3 for systemic effects.

Oral: The C9 aromatic naphtha has not been tested via the oral route of exposure. Individual TMB isomers have been evaluated in a series of repeated-dose oral studies ranging from 14 days to 3 months over a wide range of doses. The effects observed in these studies included increased liver and kidney weights, changes in blood chemistry, increased salivation, and decreased weight gain at higher doses. Organ weight changes appeared to be adaptive as they were not accompanied by histopathological effects. Blood changes appeared sporadic and without pattern. One study reported hyaline droplet nephropathy in male rats at the highest dose (1000 mg/kg bw-day), an effect that is often associated with alpha-2mu-globulin-induced nephropathy and not considered relevant to humans. The doses at which effects were detected were 100 mg/kg-bw day or above (an exception was the pilot 14 day oral study - LOAEL 150 mg/kg bw-day - but the follow up three month study had a LOAEL of 600 mg/kg/bw-day with a NOAEL of 200 mg/kg bw-day). Since effects generally were not severe and could be considered adaptive or spurious, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers.

Mutagenicity

In vitro genotoxicity testing of a variety of C9 aromatics has been conducted in both bacterial and mammalian cells. In vitro point mutation tests were conducted with Salmonella typhimurium and Escherichia coli bacterial strains, as well as with cultured mammalian cells such as the Chinese hamster cell ovary cells (HGPRT assay) with and without metabolic activation. In addition, several types of in vitro chromosomal aberration tests have been performed (chromosome aberration frequency in Chinese hamster ovary and lung cells, sister chromatid exchange in CHO cells). Results were negative both with and without metabolic activation for all category members. For the supporting chemical 1,2,3-TMB, a single in vitro chromosome aberration test was weakly positive. In in vivo bone marrow cytogenetics test, rats were exposed to C9 aromatic naphtha at concentrations of 0, 153, 471, or 1540 ppm (0, 750, 2,310, or 7,560 mg/m3) 6 hr/day, for 5 days. No evidence of in vivo somatic cell genotoxicity was detected. Based on the cumulative results of these assays, genetic toxicity is unlikely for substances in the C9 Aromatic Hydrocarbon Solvents Category

Reproductive and Developmental Toxicity

Results from the three-generation reproduction inhalation study in rats indicate limited effects from C9 aromatic naphtha. In each of three generations (F0, F1 and F2), rats were exposed to High Flash Aromatic Naphtha (CAS RN 64742-95-6) via whole body inhalation at target concentrations of 0, 100, 500, or 1500 ppm (actual mean concentrations throughout the full study period were 0, 103, 495, or 1480 ppm, equivalent to 0, 505, 2430, or 7265 mg/m3 , respectively). In each generation, both sexes were exposed for 10 weeks prior to and two weeks during mating for 6 hrs/day, 5 days/wks. Female rats in the F0, F1, and F2 generation were then exposed during gestation days 0-20 and lactation days 5-21 for 6 hrs/day, 7 days/wk. The age at exposure initiation differed among generations; F0 rats were exposed starting at 9 weeks of age, F1 exposure began at 5-7 weeks, and F2 exposure began at postnatal day (PND) 22. In the F0 and F1 parental generations, 30 rats/sex/group were exposed and mated. However, in the F2 generation, 40/sex/group were initially exposed due to concerns for toxicity, and 30/sex /group were randomly selected for mating, except that all survivors were used at 1480 ppm. F3 litters were not exposed directly and were sacrificed on lactation day 21.

Systemic Effects on Parental Generations:

The F0 males showed statistically and biologically significantly decreased mean body weight by ~15% at 1480 ppm when compared with controls. Seven females died or were sacrificed in extremis at 1480 ppm. The F0 female rats in the 495 ppm exposed group had a 13% decrease in body weight gain when adjusted for initial body weight when compared to controls. The F1 parents at 1480 ppm had statistically significantly decreased mean body weights (by ~13% (females) and 22% (males)), and locomotor activity. F1 parents at 1480 ppm had increased ataxia and mortality (six females). Most F2 parents (70/80) exposed to 1480 ppm died within the first week. The remaining animals survived throughout the rest of the exposure period. At week 4 and continuing through the study, F2

parents at 1480 ppm had statistically significant mean body weights much lower than controls (~33% for males; ~28% for females); body weights at 495 ppm were also reduced significantly (by 13% in males and 15% in females). The male rats in the 495 ppm exposed group had a 12% decrease in body weight gain when adjusted for initial body weight when compared to controls. Based on reduced body weight observed, the overall systemic toxicity LOAEC is 495 ppm (2430 mg/m3).

Reproductive Toxicity-Effects on Parental Generations: There were no pathological changes noted in the reproductive organs of any animal of the F0, F1, or F2 generation. No effects were reported on sperm morphology, gestational period, number of implantation sites, or post-implantation loss in any generation. Also, there were no statistically or biologically significant differences in any of the reproductive parameters, including: number of mated females, copulatory index, copulatory interval, number of females delivering a litter, number of females delivering a litter, or male fertility in the F0 or in the F2 generation. Male fertility was statistically significantly reduced at 1480 ppm in the F1 rats. However, male fertility was not affected in the F0 or in the F2 generations; therefore, the biological significance of this change is unknown and may or may not be attributed to the test substance. No reproductive effects were observed in the F0 or F1 dams exposed to 1480 ppm (7265 mg/m3). Due to excessive mortality at the highest concentration (1480 ppm, only six dams available) in the F2 generation, a complete evaluation is precluded. However, no clear signs of reproductive toxicity were observed in the F2 generation. Therefore, the reproductive NOAEC is considered 495 ppm (2430 mg/m3), which excludes analysis of the highest concentration due to excessive mortality.

Developmental Toxicity - Effects on Pups: Because of significant maternal toxicity (including mortality) in dams in all generations at the highest concentration (1480 ppm), effects in offspring at 1480 ppm are not reported here. No significant effects were observed in the F1 and F2 generation offspring at 103 or 495 ppm. However, in F3 offspring, body weights and body weight gain were reduced by ~ 10-11% compared with controls at 495 ppm for approximately a week (PND 14 through 21). Maternal body weight was also depressed by ~ 12% throughout the gestational period compared with controls. The overall developmental LOAEC from this study is 495 ppm (2430 mg/m3) based on the body weights reductions observed in the F3 offspring.

Conclusion: No effects on reproductive parameters were observed at any exposure concentration, although a confident assessment of the group exposed at the highest concentration was not possible. A potential developmental effect (reduction in mean pup weight and weight gain) was observed at a concentration that was also associated with maternal toxicity.

* [Devoe] .

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

For isophorone diamine

Based on a limited skin irritation study with rabbits and rats, isophorone diamine is deemed to be a strong irritant (duration of the exposure not reported) and corrosive after repeated application. Isophorone diamine is corrosive to the eyes of rabbits when tested according to OECD TG 405. Isophorone diamine was found to induce dermal sensitisation when tested according to OECD TG 406 in guinea pigs. From a number of publications there is evidence that frequent occupational exposure to isophorone diamine may lead to the development of allergic contact dermatitis in humans. No definite conclusion can be currently drawn on respiratory sensitisation. From two 14-day inhalative exposure studies with rats no NOAEL could be determined. At the first study's LOAEL of 18 mg/m3, degeneration/necrosis in the olfactory epithelium of the nose were observed. Trachea, larynx and lungs were affected at 200 mg/m3 and above (degeneration/necrosis, hyperplasia, squamous metaplasia). At the LOAEL of the follow-up study, i.e. at 2.2 mg/m3, reversible minimal to mild degeneration of respiratory nasal mucosa in the anterior dorsal nose was observed. In a subchronic drinking water study according to OECD TG 408, the administration of 150 mg/kg bw/day led to reduced absolute and relative kidney weights in male and female rats (histopathology being indicative for tubular nephrosis), while 59 mg/kg bw/day (males) and 62 mg/kg bw/day (females) were determined as a NOAEL.

Isophorone diamine was not mutagenic in bacteria and mammalian cell systems *in vitro* (Ames test according to Directive 84/449/EEC B.14 (1984) and HPRT test according to OECD TG 476 (1984)). It did not induce chromosomal aberrations in CHO cells *in vitro* in a test performed in accordance with OECD TG 473. *In vivo* mouse micronucleus tests (one performed according to OECD TG 474 (1983) for the induction of micronucleated polychromatic erythrocytes were clearly negative. From all *in vitro* and *in vivo* tests performed there is no evidence that isophorone diamine has a mutagenic or clastogenic potential.

No studies have been performed on the toxicity of isophorone diamine to reproduction.

Data from an oral 90-day study in rats according to OECD TG 408 did not reveal any adverse effects on the male and female reproductive organs.

Isophorone diamine did not show any teratogenic or embryofoetotoxic effects in a gavage study with rats performed in accordance with OECD TG 414 (2001) up to and including the highest tested dose level of 250 mg/kg bw/day. The NOAEL for maternal toxicity was 50 mg/kg bw/day, effects at 250 mg/kg bw/day were reduced food consumption and reduced body weight gain. The NOAEL for developmental toxicity is 250 mg/kg bw/day. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

ISOPHORONE DIAMINE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The material may produce respiratory tract irritation. Symptoms of pulmonary irritation may include coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and a burning sensation.

Unlike most organs, the lung can respond to a chemical insult or a chemical agent, by first removing or neutralising the irritant and then repairing the damage (inflammation of the lungs may be a consequence).

The repair process (which initially developed to protect mammalian lungs from foreign matter and antigens) may, however, cause further damage to the lungs (fibrosis for example) when activated by hazardous chemicals. Often, this results in an impairment of gas exchange, the primary function of the lungs. Therefore prolonged exposure to respiratory irritants may cause sustained breathing difficulties.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Acute Toxicity	*	Carcinogenicity	*
Skin Irritation/Corrosion	*	Reproductivity	0
Serious Eye Damage/Irritation	×	STOT - Single Exposure	*
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	0
Mutagenicity	×	Aspiration Hazard	0

Legend: 🗸 🗸

Data required to make classification available

○ – Data Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

NOT AVAILABLE

Ingredient	Endpoint	Test Duration	Effect	Value	Species	BCF
trimethylhexamethylene diamine	Not Available					
triethylenetetramine	Not Available					
naphtha petroleum, light aromatic solvent	Not Available					
isophorone diamine	Not Available					

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For 1,2,4-trimethylbenzene:

Half-life (hr) air : 0.48-16

Half-life (hr) H2O surface water : 0.24-672

Half-life (hr) H2O ground : 336-1344

Half-life (hr) soil : 168-672

Henry's Pa m3 /mol: 385-627

Bioaccumulation : not significant

1,2,4-Trimethylbenzene is a volatile organic compound (VOC) substance. As a VOC, 1,2,4-trimethylbenzene can contribute to the formation of photochemical smog in the presence of other VOCs.

Environmental fate:

 $[\]mathbf{X}$ – Data available but does not fill the criteria for classification

Transport: ,1,2,4-Trimethylbenzene volatilises rapidly from surface waters as predicted by a Henry's law constant of 5.18 x 10-3 (vapor pressure, 2.03 mm Hg). The volatilisation half-life from a model river is calculated to be 3.4 hours. The chemical also volatilises from soils, however, based on an estimated Koc of 472, moderate adsorption to soils and sediments may occur

Transformation/Persistence

Air - Degradation of 1,2,4-trimethylbenzene in the atmosphere occurs by reaction with hydroxyl radicals Reaction also occurs with ozone but very slowly (half life, 8820 days) In the atmosphere, two estimates of the half-life are approximately 6 hours and, in the presence of hydroxyl radicals, 0.5 days **Soil** - Volatilisation is the major route of removal of 1,2,4- trimethylbenzene from soils; although, biodegradation may also occur. Due to the high volatility of the chemical it is unlikely to accumulate in soil or surface water to toxic concentrations

Water - Because of 1,2,4-trimethylbenzene's water solubility and its vapor pressure of 2.03 mm Hg, the chemical will rapidly volatilise from surface waters Biodegradation of 1,2,4-trimethylbenzene occurred with inoculums from both seawater and ground water Various strains of Pseudomonas can biodegrade 1,2,4-trimethylbenzene.

Biota - The estimated bioconcentration factor (439) and high volatility of 1,2,4-trimethylbenzene indicates that bioaccumulation of the chemical will not be significant

Ecotoxicity:

Fish LC50 (96 h): fathead minnow 7.72 mg/l

No stress was observed in Oncorhynchus mykiss (rainbow trout, fingerling) or Petromyzon marinus (sea lamprey, larvae) at 5 mg/L for 24 hours Daphnia magna EC50 (48 h): 3.61 mg/l

Cancer magister (dungeness crab) LC50 996 h): 5.1 mg/l

1,2,4-Trimethylbenzene has moderate acute toxicity to aquatic organisms; acute toxicity values fall within the range of greater than 1 mg/L and 100 mg/L. LC50 values for specific aquatic organisms range from approximately 5 to 8 mg/L which is orders of magnitude greater than any measured concentration in seawater (0.002 - 0.54 microgram/L) The high concentrations required to induce toxicity in laboratory animals are not likely to be reached in the environment.

Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. For example, there is an increase in toxicity as alkylation of the naphthalene structure increases. The order of most toxic to least in a study using grass shrimp (Palaemonetes pugio) and brown shrimp (Penaeus aztecus) was dimethylnaphthalenes > methylnaphthalenes > naphthalenes.

Studies conclude that the toxicity of an oil appears to be a function of its di-aromatic and tri-aromatic hydrocarbons, which includes three-ring hydrocarbons such as phenanthrene.

The heavier (4-, 5-, and 6-ring) PAHs are more persistent than the lighter (2- and 3-ring) PAHs and tend to have greater carcinogenic and other chronic impact potential. PAHs in general are more frequently associated with chronic risks. These risks include cancer and often are the result of exposures to complex mixtures of chronic-risk aromatics (such as PAHs, alkyl PAHs, benzenes, and alkyl benzenes), rather than exposures to low levels of a single compound.

Anthrcene is a phototoxic PAH . UV light greatly increases the toxicity of anthracene to bluegill sunfish. . Benchmarks developed in the absence of UV light may be under-protective, and biological resources in strong sunlight are at more risk than those that are not.

For isophorone diamine:

Persistence/Biodegradability: 42% (DOC, OECD 303A) *8.0% (DOC, Die away test -9/69/EEC) *

* [Morton]

Environmental fate:

Isophorone diamine has a melting point of 10 C, is miscible with water and has a vapour pressure of 0.02 hPa at 20 C. The measured log Kow is 0.99 (23 C). The pKa of approximately 10.4 characterises the substance as a moderate base.

According to a Mackay Level I model calculation, the main target compartment for isophorone diamine will be water (99.8 %), followed by sediment and soil (both 0.08 %). It has to be considered that under environmental relevant pH conditions the substance is available as cation and therefore the prediction of the environmental distribution using the data for the uncharged molecule is not appropriate. The calculated Henry's law constant of 0.000446 Pa m3/mol indicates very low volatility from surface waters.

Dissociation in aqueous solution will further reduce the volatility. With a calculated Koc of 340.4 l/kg, the sorption potential to soil or sediment organic matter is expected to be moderate. However, as in the environment the substance is available as cation, binding to the matrix of soils with high capacities for cation exchange (e.g. clay) cannot be excluded.

In the atmosphere, isophorone diamine is rapidly removed by reaction with hydroxyl radicals with a calculated half-life of 0.2 days. In water, it is expected to hydrolyse at a low rate under environmental conditions (t1/2 > 1 year at 25 C). Photolytic degradation in surface waters is expected to be of minor importance due to the chemical structure. Isophorone diamine is not readily biodegradable (OECD 301A: 8 % after 28 days). However, in a simulation test with activated, non-adapted sludge, a degradation of 42 % (including a minor, though not negligible contribution by adsorption to sludge) was measured after a contact time of 6 hrs. The log Kow value of 0.99 indicates a low bioaccumulation potential.

Ecotoxicity:

Fish LC50 (96 h): Leuciscus idus 110 mg/l; (48 h): 185 mg/l

Daphnia magna EC50 (48 h): 23 mg/l

Daphnae LC50 (24 h): 42 mg/l

Algae ErC50 (72 h): Scenedesmus subspicatus >50 mg/l; EbC50 (72 h): 37 mg/l

Pseudomonas putida EC10 (16 h): 1120 mg/l

Long term aquatic toxicity data are available for two trophic levels: Daphnia magna: 21-d NOEC = 3.0 mg/l;

Scenedesmus subspicatus: 72-h ErC10 = 11 mg/l; 72-h EbC10 = 3.0 mg/l

An assessment factor of 50 was applied to the lowest of two long-term results covering two trophic levels. The PNEC of 0.06 mg/l for aquatic organisms was calculated from the NOEC for Daphnia = 3.0 mg/l.

For benzyl alkyl alcohols:

All of the cluster members are liquids under standard temperature and pressure conditions. The log of the octanol/water partition coefficients range from 1.36 to 2.06 and vapor pressures lie within a narrow range of approximately 0.01 to 0.1 hPa at room temperature. Water solubilities exceed 5x10+3 mg/L for the members of this cluster.

Environmental fate:

The cluster members are expected to have high mobility in soil based on estimated soil partition coefficients. Volatilization of the cluster members is considered low based on measured Henry's Law constants for two members. The estimated rates of atmospheric photooxidation are considered moderate. The rate of hydrolysis for all cluster members is considered negligible, but there is a potential for some of the members to undergo photolysis. The cluster members are expected to biodegrade rapidly under aerobic conditions in the environment based on the results of ready biodegradability tests. Fugacity modeling indicates that all members of this cluster are anticipated to partition primarily to soil, secondarily to water, and very slightly to air. Overall, the cluster members are expected to have low persistence in the environment. Bioaccumulation potential is expected to be low based on

estimated bioconcentration factors.

Ecotoxicity:

For benzoates:

Evaluation of the available experimental and estimated aquatic toxicity data for fish, daphnia, and green algae indicate that the potential acute hazard is low. The potential chronic hazard is expected to be low for fish and algae for all cluster members. However, a moderate hazard is predicted for daphnia for the cluster members with slightly higher molecular weights and octanol-water partition coefficients.

The ultimate environmental characteristics for benzoates may be determined by the properties of counter-ions. The description below assumes these to be non-toxic.

Environmental Exposure and Fate

Distribution modelling using Mackay Level III (the EPA default: equal releases (10,000 kg/hr) and equal distribution to all compartments was used) indicates water (34.8-50%) and soil (48.4-64.2%) to be the main compartment for benzyl alcohol, benzoic acid, sodium and potassium benzoates. None are expected to volatilise to the atmosphere (< 1.51%), nor to adsorb to sediment (< 0.09 %).

However physical chemical properties and use patterns indicate water to be the main compartment for these substances.

Based on structure and organic chemistry rules (e.g. bonding in organic molecules, activation energy, reactivity, transformations, addition, substitution, elimination) no hydrolysis is expected at pH ranges of 4 - 11.

The calculated photodegradation for benzyl alcohol and the benzoates are 50% after 1.3 to 3 days , and the measured photodegradation for benzoic acid is 90% after 140 minutes .

Biodegradation and Bioaccumulation:

This family of substances is readily biodegradable (> 90% after 28 days) both aerobically and anaerobically (Benzoic acid is used as positive control in OECD Guideline for ready biodegradability testing).

From the results of numerous removal experiments the main elimination pathway for the chemicals is biotic mineralisation. The octanol/water partition coefficient of all compounds indicates a low potential for bioaccumulation. This is also supported by the rapid biotransformation and/or excretion of these compounds in urine in mammals.

Ecotoxicity:

From the data (fish, daphnia, algae, bacteria) it is obvious that neutralisation of the pH greatly reduces (up to one order of magnitude) the acute toxicity of benzoic acid. This is also supported by the lower toxicity observed with sodium benzoate. Under environmental relevant conditions therefore the acute toxicity of benzoic acid, sodium benzoate and potassium benzoate for all four trophic levels is > 100 mg/l. Under environmental relevant conditions the acute toxicity of benzoic acid and its salts have very low acute toxicity, whereas benzyl alcohol has low to moderate acute toxicity. For benzyl alcohol:

log Kow : 1.1 Koc : <5 Henry's atm m3 /mol: 3.91E-07 BOD 5: 1.55-1.6,33-62% COD : 96% ThOD : 2.519 BCF : 4 Bioaccumulation : not significant Anaerobic effects : significant degradation Effects on algae and plankton: inhibits degradation of glucose Degradation Biological: significant processes Abiotic: RxnOH*,no photochem **Ecotoxicity**

Fish LC50 (48 h): fathead minnow 770 mg/l; (72 h): 480 mg/l; (96 h) 460 mg/l

Fish LC50 (96 h) fathead minnow 10 ppm, bluegill sunfish 15 ppm; tidewater silverside fish 15 ppm

Products of Biodegradation: Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise. Toxicity of the Products of Biodegradation: The products of degradation are less toxic than the product itself.

Prevent, by any means available, spillage from entering drains or water courses. **DO NOT** discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
trimethylhexamethylene diamine	HIGH	HIGH
triethylenetetramine	LOW	LOW
isophorone diamine	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
trimethylhexamethylene diamine	LOW (LogKOW = 1.6347)
triethylenetetramine	LOW (LogKOW = -2.6464)
isophorone diamine	LOW (BCF = 3.4)

Mobility in soil

Ingredient	Mobility

trimethylhexamethylene diamine	LOW (KOC = 1101)
triethylenetetramine	LOW (KOC = 309.9)
isophorone diamine	LOW (KOC = 340.4)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment met	 Containers may still present a chemical hazard/ danger when empty. Return to supplier for reuse/ recycling if possible. Otherwise: If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. Where possible retain label warnings and MSDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:
Product / Packaging disposal	 Reduction Reuse Recycling Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal.
	 In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority. Recycle wherever possible. Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. Treat and neutralise at an approved treatment plant. Treatment should involve: Neutralisation with suitable dilute acid followed by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material). Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

	CORRESPEC
Marine Pollutant	NO
HAZCHEM	2X

Land transport (ADG)

UN number	2735		
Packing group	III		
UN proper shipping name	AMINES, LIQUID, CORROSIVE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S. (contains isophorone diamine)		
Environmental hazard	No relevant data		
Transport hazard class(es)	Class8SubriskNot Applicable		
Special precautions for user	Special provisions223 274Limited quantity5 L		

Air transport (ICAO-IATA / DGR)

UN number	2735			
Packing group	Ш			
UN proper shipping name	Amines, liquid, corrosi	ve, n.o.s. *; Polyamines, liquid, corrosiv	e, n.o.s. * (con	tains isophorone diamine)
Environmental hazard	No relevant data			
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	8 Not Applicable 8L		
Special precautions for user	Passenger and Cargo Passenger and Cargo		A3A803 856 60 L 852 5 L Y841 1 L	

Sea transport (IMDG-Code / GGVSee)

UN number	2735		
Packing group	III		
UN proper shipping name	AMINES, LIQUID, CORROSIVE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S. (contains isophorone diamine)		
Environmental hazard	Not Applicable		
Transport hazard class(es)	IMDG Class8IMDG SubriskNot Applicable		
Special precautions for user	EMS NumberF-A, S-BSpecial provisions223 274Limited Quantities5 L		

Transport in bulk according to Annex II of MARPOL 73 / 78 and the IBC code

Source	Ingredient	Pollution Category
IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk	triethylenetetramine	Y
IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk	naphtha petroleum, light aromatic solvent	Y
IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk	isophorone diamine	Y

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

TRIMETHYLHEXAMETHYLENE DIAMINE(25620-58-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

TRIETHYLENETETRAMINE(112-24-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Substances Information System - Consolidated Lists Australia Inventory of Chemical Substances (AICS)

NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT(64742-95-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Substances Information System - Consolidated Lists Australia Inventory of Chemical Substances (AICS)

ISOPHORONE DIAMINE(2855-13-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Substances Information System - Consolidated Lists Australia Inventory of Chemical Substances (AICS)

National Inventory	Status	
Australia - AICS	Y	
Canada - DSL	Υ	
Canada - NDSL	N (naphtha petroleum, light aromatic solvent; isophorone diamine; trimethylhexamethylene diamine; triethylenetetramine)	
China - IECSC	Y	
Europe - EINEC / ELINCS / NLP	Υ	
Japan - ENCS	Y	
Korea - KECI	Υ	
New Zealand - NZIoC	Y	
Philippines - PICCS	Υ	
USA - TSCA	Υ	
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)	

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

Name	CAS No
trimethylhexamethylene diamine	105759-40-8, 112360-55-1, 125146-87-4, 130014-36-7, 161075-53-2, 172084-55-8, 178861-94-4, 25513-64-8, 25620-58-0, 3236-53-1, 3236-54-2, 72258-26-5, 76582-77-9, 87748-70-7, 93365-28-7
naphtha petroleum, light aromatic solvent	25550-14-5, 64742-95-6

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

end of SDS